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1 Basic Assumptions

Let (wt) be an m-dimensional stochastic process and we define

Bn(r) =
1√
n

[nr]∑
t=1

wt,

where r ∈ [0, 1] and [·] denotes the first integer less than or equal to nr. Note that Bn(r) is

a stochastic process constructed from wt and that the sample path of Bn is in D[0, 1], the

space of cadlag (right continuous with left limit) function on [0,1].

Assumption 1. We assume that the process w is such that

Bn →d B,

where B is a vector Brownian motion (BM) with a well-defined covariance matrix

Ω = lim
n→∞

1

n
E

(
n∑

t=1

wt

)(
n∑

t=1

wt

)′

.

Note that Ω is the long run variance of wt. If wt is weakly stationary with absolutely

summable autocovariance function

Γ(k) = Ewtwt−k,
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then it follows from the Toeplitz (or Kronecker) lemma that

Ω = lim
n→∞

n∑
k=−n

(
1− |k|

n

)
Γ(k) =

∞∑
k=−∞

Γ(k).

We may decompose Ω as

Ω = Σ+ Λ+ Λ′, (1)

where

Σ = Γ(0), and Λ =

∞∑
k=1

Γ(k).

Let W be a standard vector BM, the covariance matrix of which is the identity matrix. We

may represent B by

B = Ω1/2W.

Assumption 1 is a statement of the invariance principle (IP) or functional central limit

theorem (FCLT). The way we make Assumption 1 is unusual, in the sense that we avoid

making direct assumptions (e.g., iid, stationarity, etc.) on wt. This is a convenient and

flexible way of making assumptions. Assumption 1, in particular, allow wt to be general

linear processes defined as follows,

wt = ϕ(L)εt =
∞∑
k=0

ϕkεt−k,

where
∑

k k|ϕk| < ∞ and εt ∼ i.i.d.(0, σ2). We have

1√
n

[nr]∑
t=1

wt = ϕ(1)
1√
n

[nr]∑
t=1

εt +Rn(r),

where supr∈[0,1] |Rn(r)| →p 0. We therefore have

1√
n

[nr]∑
t=1

wt →d ϕ(1)σW (r).
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Of course, Assumption 1 allows more than the linear process defined above. For another

example, if εt in a martingale difference sequence with finite fourth moment, the IP still

holds.

In many applications there may be deterministic trends, say (ct). We allow ct to be

ℓ-dimensional with i-th component cit. We define fn = (fn1, . . . , fnℓ)
′, where fni ∈ D[0, 1]

is given by

fni(r) =
ci[nr]

nδi
, for some δi ≥ 0.

Assumption 2. For each i, we assume that there exists δi ≥ 0 and a function fi ∈ L2[0, 1]

of bounded variation such that

fni →L2 fi.

2 Fundamental Results

Let zt =
∑t

i=1wi, or ∆zt = wt with z0 = 0. We first present the continuous mapping

theorem,

Continuous Mapping Theorem Suppose Xn →d X and the distribution of X is P ,

and let π be a functional continuous P a.s., then we have

π(Xn) →d π(X).

The continuous mapping theorem implies, for example,

sup
r∈[0,1]

Bn(r) →d sup
r∈[0,1]

B(r)∫ 1

0
Bn(r) →d

∫ 1

0
B(r)dr

Bn(1) →d B(1)
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The last result can be rewritten as

1√
n

n∑
t=1

wt →d N(0,Ω),

which is a central limit theorem (CLT). Thus the IP or FCLT generalizes and implies much

more than CLT.

The following lemma presents a few results that are fundamental to the asymptotic

analysis of regressions involving nonstationary time series.

Lemma 1: Suppose Assumption 1 and 2 hold for wt and ct, we have

(a) 1
nδi+3/2

∑n
t=1 citzt →d

∫ 1
0 fi(r)B(r)dr.

(b) 1
nδi+1/2

∑n
t=1 citwt →d

∫ 1
0 fi(r)dB(r).

(c) 1
n2

∑n
t=1 ztz

′
t →d

∫ 1
0 B(r)B(r)′dr.

(d) 1
n

∑n
t=1 zt−1w

′
t →d

∫ 1
0 B(r)dB(r)′ + Λ′.

(e) 1
n

∑n
t=1 ztw

′
t →d

∫ 1
0 B(r)dB(r)′ +∆′.

Proof:

(a)-(c) We have

1

n

n∑
t=1

cit
nδi

zt√
n

=

∫ 1

0
fni(r)Bn(r)dr + op(1)

n∑
t=1

cit
nδi

wt√
n

=

∫ 1

0
fni(r)dBn(r) + op(1)

1

n

n∑
t=1

zt√
n

z′t√
n

=

∫ 1

0
Bn(r)dBn(r) + op(1).

The results then follow from the continuous mapping theorem.
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(d) We prove the scalar case, as the vector case is much more involved. First note that

n∑
t=1

zt−1wt =
n∑

t=1

(
t−1∑
i=1

wi

)
wt =

1

2

( n∑
t=1

wt

)2

−
n∑

t=1

w2
t

 .

We have

1

n

n∑
t=1

zt−1wt =
1

2

( 1√
n

n∑
t=1

wt

)2

− 1

n

n∑
t=1

w2
t

→d
1

2

(
B(1)2 − σ2

)
,

where σ2 = var(wt) and B is a BM with long run variance ω2. Applying the famed

Ito’s formula to W 2
t , we have W (t)2 = 2

∫ t
0 W (r)dW (r) + t, which implies

∫ 1

0
W (r)dW (r) =

1

2

(
W (1)2 − 1

)
.

Since B = ωW , ∫ 1

0
B(r)dB(r) =

1

2

(
B(1)2 − ω2

)
.

Since ω2 = σ2 + 2λ by definition (The vector version is in (1)), we have

1

2

(
B(1)2 − σ2

)
=

∫ 1

0
B(r)dB(r) + λ.

Note that
∫ 1
0 BdB is zero-mean. The term λ gives the asymptotic mean of 1

n

∑n
t=1 zt−1wt.

For the vector case, the result may be generalized to

1

n

n∑
t=1

zt−1w
′
t →d

∫ 1

0
B(r)dB(r)′ + Λ′.

(e) Note that

1

n

n∑
t=1

ztw
′
t =

1

n

n∑
t=1

zt−1w
′
t+

1

n

n∑
t=1

wtw
′
t →d

∫ 1

0
B(r)dB(r)′+Λ′+Σ =

∫ 1

0
B(r)dB(r)′+∆′.
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3 Cointegration

Definition

We first introduce a notation. We say that zt ∼ I(k) if (1 − Lk)zt is stationary. By

convention, we say zt ∼ I(0) if zt is stationary. Let xt be an m−dimensional time series

and yt be a scalar process. If both xt and yt are I(1) and there exists an I(0) process ut

and β ∈ Rm such that

yt = x′tβ + ut, (2)

we say that xt and yt are cointegrated. In economic applications, cointegration is taken to

be a long term stable relationship, which may fluctuate in the short term but would reassert

itself under some economic force.

Asymptotic Properties of OLS Estimators

To study the statistical properties of the OLS estimator β̂, we define

wt = (ut ∆x′t)
′.

We assume that wt satisfies Assumption 1 (invariance principle). We partition all quantities

(B(r), Ω, etc.) conformably with ut and ∆xt in the definition of wt. For example, we write

B(r) =

 B1(r)

B2(r)

 , Ω =

 ω11 ω12

ω21 Ω22

 , ∆ =

 δ11 δ12

δ21 ∆22

 .

Note that partitioned components are denoted by the same letter (lower case for scalar or

vector components). We have the following result,

n
(
β̂ − β

)
→d

(∫ 1

0
B2(r)B2(r)

′dr

)−1(∫ 1

0
B2(r)dB1(r) + δ21

)
.
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To prove this, we write

n
(
β̂ − β

)
=

(
1

n2

n∑
t=1

xtx
′
t

)−1(
1

n

n∑
t=1

xtut

)
.

The conclusion then follows from the fundamental lemma in the previous section.

When there are I(0) regressors, in addition to xt, the limiting distribution of the OLS

estimator of β does not change. Consider

yt = v′tα+ x′tβ + ut,

where vt ∼ I(0) and 1
n

∑n
t=1 vtut →p 0. The OLS estimator of β is given by

β̂ =

(
n∑

t=1

x̃tx̃
′
t

)−1( n∑
t=1

x̃tut

)
,

where x̃t = xt − (
∑n

t=1 xtv
′
t) (
∑n

t=1 vtv
′
t)
−1 vt, i.e., the residual of the regression of xt on vt.

We have

1

n2

n∑
t=1

x̃tx̃
′
t =

1

n2

∑
t=1

nxtx
′
t −

1

n

(
n∑

t=1

xtv
′
t

)(
n∑

t=1

vtv
′
t

)−1( n∑
t=1

vtx
′
t

)

=
1

n2

n∑
t=1

xtx
′
t +Op

(
1

n

)
,

and

1

n

n∑
t=1

x̃tut =
1

n

∑
t=1

nxtut −

(
n∑

t=1

xtv
′
t

)(
n∑

t=1

vtv
′
t

)−1( n∑
t=1

vtut

)

=
1

n2

n∑
t=1

xtut + op (1) .

We may now apply the fundamental lemma and confirm our claim.

However, when there are deterministic regressors ct in addition to xt, the limiting dis-
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tribution of the OLS estimator of β may change. Consider

yt = c′tα+ x′tβ + ut,

where ct satisfies Assumption 2. Let x̃t be the residual of the regression of xt on ct, and let

c∗t = D−1
n ct,

where Dn = diag(nδ1 , . . . , nδℓ). We have

1

n2

n∑
t=1

x̃tx̃
′
t =

1

n2

n∑
t=1

xtx
′
t −

(
1

n

n∑
t=1

xt√
n
c′t

)(
1

n

n∑
t=1

ctc
′
t

)−1(
1

n

n∑
t=1

ct
x′t√
n

)

=
1

n2

n∑
t=1

xtx
′
t −

(
1

n

n∑
t=1

xt√
n
c∗t

′

)(
1

n

n∑
t=1

c∗t c
∗
t
′

)−1(
1

n

n∑
t=1

c∗t
x′t√
n

)

→d

∫ 1

0
B2B

′
2 −

(∫ 1

0
B2f

′
)(∫ 1

0
ff ′
)−1(∫ 1

0
fB′

2

)
=

∫ 1

0
B̃2B̃

′
2,

where B̃2(r) = B2(r)−
∫ 1
0 B2f

′
(∫ 1

0 ff ′
)−1

f(r) = (I−Pf )B2, i.e., the residual of the Hilbert

space projection of B2 on the span of f . And we have

1

n

n∑
t=1

x̃tut =
1

n2

n∑
t=1

xtut −

(
1

n

n∑
t=1

xt√
n
c′t

)(
1

n

n∑
t=1

ctc
′
t

)−1(
1√
n

n∑
t=1

ctut

)

=
1

n2

n∑
t=1

xtut −

(
1

n

n∑
t=1

xt√
n
c∗t

′

)(
1

n

n∑
t=1

c∗t c
∗
t
′

)−1(
1√
n

n∑
t=1

c∗tut

)

→d

(∫ 1

0
B2dB

′
1 + δ21

)
−
(∫ 1

0
B2f

′
)(∫ 1

0
ff ′
)−1(∫ 1

0
fdB′

1

)
=

∫ 1

0
B̃2dB

′
1 + δ21
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For example, if ct = t, then f(r) = r and

B̃2(r) = B2(r)− 3r

∫ 1

0
B2(r)rdr,

which is definitely different from B2(r).

Spurious Regression

Let yt and xt be I(1). If yt − x′tβ is I(1) for any β, we say that the regression

yt = x′tβ + et (3)

is a spurious regression. If we estimate β in (3) using OLS, we will get inconsistent estimates.

The computed R2 will also be misleading, since it will be random and often close to 1. To

see this, define

wt = (∆yt,∆x′t)
′,

which is assumed to satisfy the IP with Ω > 0. Since

β̂ =

(
n∑

t=1

xtx
′
t

)−1( n∑
t=1

xtyt

)

R2 =
(
∑n

t=1 ytx
′
t) (
∑n

t=1 xtx
′
t)
−1 (

∑n
t=1 xtyt)∑n

t=1 y
2
t

,

we rewrite

β̂ =

(
n∑

t=1

xt√
n

x′t√
n

)−1( n∑
t=1

xt√
n

yt√
n

)

R2 =

(∑n
t=1

yt√
n

x′
t√
n

)(∑n
t=1

xt√
n

x′
t√
n

)−1 (∑n
t=1

xt√
n

yt√
n

)
∑n

t=1

(
yt√
n

)2 .
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We thus obtain

β̂ →d

(∫ 1

0
B2B

′
2

)−1 ∫ 1

0
B2B1

R2 →d

∫ 1
0 B1B

′
2

(∫ 1
0 B2B

′
2

)−1 ∫ 1
0 B′

2B1∫ 1
0 B2

1

.

4 Unit Root Tests


