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1 The Model

A state space model is given by

yt = Awt +Bxt + ut (1)

wt = Twt−1 + vt, (2)

where yt is a vector of observed variables, xt is a vector of exogenous or predetermined

variables, and wt is a vector of possibly unobserved variables. Equation 1 is often referred to

as the measurement equation, and (2) is often called the transition equation. The residuals

ut and vt are write noises that are uncorrelated with each other. We assume Eutu′t = R

and Evtv′t = Q. And we often assume (ut, vt) are jointly normal.

Example 1: AR(p) Recall that the AP(p) model can be written in VAR(1) form as

follows, 

yt

yt−1

...

yt−p+1


=



α1 · · · αp−1 αp

1 0 0

...
. . .

...
...

0 · · · 1 0





yt−1

yt−2

...

yt−p


+



εt

0

...

0


.

Let wt = (yt, yt−1, . . . , yt−p+1)
′, the above equation can be regarded as the transition equa-

tion in state-space representation. The measurement equation is a naive identity, setting

A = (1, 0, . . . , 0), B = 0, and ut = 0.



2

Example 2: ARMA(p, q) Consider an ARMA(p, q) process, α(L)yt = β(L)εt. Let

zt = α(L)−1εt, we have

yt = β(L)zt

α(L)zt = εt

If we let r = max(p, q + 1) and define wt = (zt, . . . , zt−r+1)
′, we can easily write the model

in state-space form. Consider ARMA(1, 1) for an example,

(1− αL)yt = (1 + βL)εt.

We let

wt =

 zt

zt−1

 , T =

 α 0

1 0

 , vt =

 εt

0

 , A = (1 β), B = 0, ut = 0.

2 Kalman Filter

The Kalman filter recursively estimates unobserved state variable (wt) using observable

albeit noisy signal (yt). Let Ft be the natural filtration of (yt) and assume that (xt) is

adapted to (Ft). Denote

ws|t = E(ws|Ft), ys|t = E(ys|Ft),

and

Ωs|t = var(ws|Ft), Σs|t = var(ys|Ft).

The Kalman filter operates in two steps, prediction and updating.
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Prediction Note first that, under normality, (ys)
t−1
s=1 are independent of ut and vt. To

see this, we write yt = A(T tw0 + T t−1v1 + · · ·+ Tvt−1 + vt) + Bxt + ut. It is clear that ys

is uncorrelated with vt and ut for all s < t. Conditioning the measurement and transition

equations on Ft−1, we then obtain the predictions of the unobservable wt as well as the

observable yt.

wt|t−1 = Twt−1|t−1

yt|t−1 = Awt|t−1 +Bxt.

The conditional variances of these predictions are

Ωt|t−1 = TΩt−1|t−1T
′ +Q

Σt|t−1 = AΩt|t−1A
′ +R

Updating This step updates our knowledge of wt given the observation of yt. Under

normality, we have

 wt

yt

 | Ft−1 = N


 wt|t−1

yt|t−1

 ,

 Ωt|t−1 Ωt|t−1A
′

AΩt|t−1 Σt|t−1


 .

Then we have

wt|t = E(wt|yt,Ft−1)

= wt|t−1 +Ωt|t−1A
′Σ−1

t|t−1(yt − yt|t−1),

and

Ωt|t = var(wt|yt,Ft−1)

= Ωt|t−1 − Ωt|t−1A
′Σ−1

t|t−1AΩt|t−1.
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Note that (wt|t − wt|t−1) is proportional to the forecast error (yt − yt|t−1). The proportion

Kt = Ωt|t−1A
′Σ−1

t|t−1 is called the Kalman gain. As the weight assigned to the new infor-

mation, the Kalman gain is proportional to the conditional variance of wt and inversely

proportional to the conditional variance of yt (signal).

MLE Unknown parameters in the state-space equations can be estimated by MLE. Under

normality, we have

yt|Ft−1 ∼ N(yt|t−1,Σt|t−1).

Then the log likelihood of (y1, y2, . . . , yt) is given by

Lt =

t∑
s=1

ℓs(θ)

= − t

2
log(2π)− 1

2

t∑
s=1

log detΣs|s−1 −
1

2

t∑
s=1

(yt − yt|t−1)
′Σ−1

t|t−1(yt − yt|t−1).

Both yt|t−1 and Σt|t−1 are functions of parameters θ. They are iteratively computed from

the prediction and updating steps of the Kalman filter given an initial value of w0|0.

Smoothing Sometimes the inference of wt given all observations of (y1, y2, . . . , yn) is of

interest. More specifically, we may be interested in wt|n = E(wt|Fn) and Ωt|n = var(wt|Fn).

Under normality, since

yt+k = A
(
T k−1wt+1 + T k−2vt+2 + · · ·+ vt+k

)
+Bxt+k + ut+k,

yt+k is independent of wt given wt+1 and Ft for all k ≥ 1. Thus we have

E(wt|wt+1,Fn) = E(wt|wt+1,Ft).
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At the same time, since

 wt

wt+1

 | Ft = N


 wt|t

wt+1|t

 ,

 Ωt|t Ωt|tT
′

TΩt|t Ωt+1|t


 ,

we have

wt|n = E (E (wt|wt+1,Fn) |Fn)

= E (E (wt|wt+1,Ft) |Fn)

= E
(
wt|t +Ωt|tT

′Ω−1
t+1|t(wt+1 − wt+1|t)|Fn

)
.

= wt|t + Jt(wt+1|n − wt+1|t),

where Jt = Ωt|tT
′Ω−1

t+1|t. To obtain Ωt|n, we rewrite the above equation as,

wt|n − wt|t = Jt(wt+1|n − wt+1|t). (3)

Note that wt|t = E(wt|n|Ft), we thus have 1

E(wt|n − wt|t)(wt|n − wt|t)
′ = Ew2

t|n − Ew2
t|t.

Furthermore,

Ew2
t|n = E

(
E2(wt|Fn)

)
= E

(
−Ωt|n + E(w2

t |Fn)
)

= −Ωt|n + Ew2
t .

1Here we use the following result: Suppose we have two random vectors X and Y and Y = E(X|F), we
have E(X − Y )(X − Y )′ = EXX ′ − EY Y ′, since EXY ′ = E[XE(X|F)] = E {E[XE(X|F)]|F} = EY Y ′.
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Similarly, we have

Ew2
t|t = −Ωt|t + Ew2

t .

Hence, if we take expectation of the outer product of both sides of (3). The left-hand side

gives,

E(wt|n − wt|t)(wt|n − wt|t)
′ = Ωt|t − Ωt|n.

The right-hand side similarly gives,

JtE(wt+1|n − wt+1|t)(wt+1|n − wt+1|t)
′J ′

t = Jt(Ωt+1|t − Ωt+1|n)J
′
t.

Rearranging terms, we obtain

Ωt|n = Ωt|t + Jt(Ωt+1|n − Ωt+1|t)J
′
t,

which can be iteratively applied to estimate all (Ωt|n), given Ωn|n which is known in the

update step.

Nonnormality If we do not assume normality, the above results are still applicable,

although we need to interpret them differently. We may make the following convention,

• Ft linear space spanned by (ys)
t
s=1

• E(·|Ft) projection on Ft

• var(·|Ft) variance of Ft-projection error.

Under this convention, the Kalman filter finds the minimum mean square linear estimate

and its mean squared error.
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3 Markov Switching Autoregressive Model (Hamilton’s)

Hamilton’s Markov Switching Autoregressive Model (MSAR) is given by

yt = µst + wt

α(L)wt = εt,

where α(z) = 1 − α1L − · · · − αpz
p, (st) is a series of unobservable state variables that is

described by a Markov chain conditional on (Ft−1), and εt is assumed to be i.i.d. N(0, σ2).

We assume that the process st can take values in {1, . . . , N}, where N is the number

of states or regimes. Markov chain may be the simplest model for such a discrete-valued

process. It assumes that the probability of st being in some state depends on the past only

through the value of st−1,

P{st = j|st−1 = i, st−2 = k, . . . , } = P{st = j|st−1 = i} ≡ pij .

{pij} satisfies
∑N

j=1 pij = 1 for all i and are called transition probabilities. We may conve-

niently {pij} in matrix form,

P =



p11 p21 · · · pN1

p21 p22 · · · pN2

...
...

. . .
...

pN1 pN1 · · · pNN


.

P is called the transition matrix. Using the transition matrix, we may represent a Markov

chain with a vector autoregression. First, let (ei, i = 1, . . . , N) be N × 1 vectors with 1 on
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the i-th element and 0’s on the remaining. We define a vector-valued process ξt,

ξt =



e1 = (1, 0, 0, . . . , 0)′ when st = 1

e2 = (0, 1, 0, . . . , 0)′ when st = 2

...
...

eN = (0, 0, 0, . . . , 1)′ when st = N

Note that

E(ξt|ξt−1 = ei) = E(ξt|st−1 = i) =



pi1

pi2
...

piN


= Pei.

We thus have

E(ξt|ξt−1) = Pξt−1.

Furthermore, it is straightforward to show that

E(ξt+m|ξt) = Pmξt.

Example: A two-state MSAR(1) model The model is defined as follows,

yt = µst + wt, st ∈ {1, 2}

wt = αwt−1 + εt

P =

 p 1− p

1− q q

 .

The parameters in this model include µ1, µ2, α, σ
2, p, and q.

MLE We first consider MSAR(1) models. Our results extend easily to more general

MSAR(p) models. To obtain likelihood for (y1, . . . , yn), we iteratively calculate p(yt|Ft−1).
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In each step, the calculation has two steps, prediction and updating, much like the Kalman

filter. The prediction step is

p(yt|Ft−1) =
∑

st,st−1

p(yt|st, st−1,Ft−1)p(st, st−1|Ft−1),

where

p(st, st−1|Ft−1) = p(st|st−1)p(st−1|Ft−1).

Note that p(st|st−1) is transition probabilities. The updating step calculates p(st, st−1|Ft),

marginal integration of which gives p(st|Ft),

p(st, st−1|Ft) =
p(yt|st, st−1,Ft−1)p(st, st−1|Ft−1)

p(yt|Ft−1)
.

For more general MSAR(p), we consider p(st, st−1, . . . , st−p|Ft−1) and p(st, st−1, . . . , st−p|Ft)

in place of p(st, st−1|Ft−1) and p(st, st−1|Ft), respectively.

Smoothing We may make more precise statements on the state/regime at time t using

full-sample, like the smoothing step in the Kalman filter. Note first that we already have

p(sn, sn−1|Fn), hence it suffices to find a way to calculate p(st, st−1|Fn) given p(st+1, st|Fn).

It is well known from the Bayes formula that

p(x|y, z) = p(x|z) if p(y|x, z) = p(y|z).

Since p(yt+k|st+1, st, st−1,Ft) = p(yt+k|st+1, st,Ft) for all k ≥ 1, we have

p(st−1|st+1, st,Fn) = p(st−1|st+1, st,Ft).
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Similarly, since p(st+1|st, st−1,Ft) = p(st+1|st,Ft), we have

p(st−1|st+1, st,Ft) = p(st−1|st,Ft) =
p(st, st−1|Ft)

p(st|Ft)
.

Now we can calculate

p(st+1, st, st−1|Fn) = p(st−1|st+1, st,Fn)p(st+1, st|Fn).

Taking marginal integration (summation) of p(st+1, st, st−1|Fn) along the first dimension,

we obtain p(st, st−1|Fn). Similarly, the smoothing step of MSAR(p) models calculates

p(st, . . . , st−p|Fn) from p(st+1, . . . , st−p+1|Fn). We have

p(st+1, . . . , st−p|Fn) = p(st−p|st+1, . . . , st−p+1,Fn)p(st+1, . . . , st−p|Fn),

where

p(st−p|st+1, . . . , st−p+1,Fn) = p(st−p|st+1, . . . , st−p+1,Ft)

= p(st−p|st, . . . , st−p+1,Ft)

=
p(st, . . . , st−p+1, st−p|Ft)

p(st, . . . , st−p+1|Ft)
.
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