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1 Introduction

In this chapter we consider vector-valued stochastic processes. We discuss VAR (Vector

AutoRegression), Structural VAR, and multivariate conditional variance-covariance models.

2 VAR

We consider an r-dimensional vector autoregression (VAR) of the following form,

Xe=AXi 1+ +AX—p + ey, (1)

where (A;) are VAR coefficient matrices and e, ~ WN(0, 3). We call the above model p-th
order VAR model or VAR(p) model.

We may represent the model in (1) as

A(L)Xt = &¢,

where L is lag operator and A(z) =1 — A1z —--- — Ap2P is a matrix of polynomials.

It is also useful to write the model in AR(1) form,

Xi = AX{ o+, (2)



where
Xt A1 . Ap—l Ap €t
Xi1 I 0
Xt* = 5 A = s 8: ey
Xt—p+1 I 0

The eigenvalues of the matrix A satisfies

NPT — NP71A) — o — Ay =0.

For the covariance stationarity of (X;), all eigenvalues of A should be within the unit circle,
so that any shock in e; eventually die out. This condition is equivalent to the one that
requires all roots of |A(z)| = 0 lie outside the unit circle.

When the above condition holds, (X;) has an MA(co) representation, X; = ®(L)e,
where ®(z) = > 50, ®;2" with ®; satisfying > 50, |®;| < co. | -| here denotes any matrix
norm. The MA coefficients can be obtained from the power series expansion of A(z)~!,

which exists on the unit disk in the complex plane since it is analytic.

2.1 Maximum Likelihood Estimation

Let II be an r x (rp) matrix of parameters defined as

I =[A Ay - A).

If we define Z; = [X} ;X[ ,--- X[ ,|', we may write the original model in (1) as

Xt = HZt + Et.



The conditional likelihood of X} is

/2

1 _
p(Xy, 0| F—1) = (2m)"/2 |07 <—2(Xt —10Z,) Q7 Y(X; —HZt)>,

where 6 is the vector of parameters. The likelihood for the full sample conditional on

(Xo,X_1,...,X1-p) is thus given by

T
p(Xr,..., X1,0) = [[ p(Xe, 01 1)
t=1

The log conditional likelihood to be maximized is

T
D (X -TZ) Q7N (X, — 11Z,). (3)
t=1

T
L= —% log(2m) + log ]Q )+

N

We claim that the MLE of II is the same as the OLS estimator:

() (S

To show this, first note that the MLE of IT shall minimize the sum in the last term in (3),

-1

which can be rewritten as

T
(X -TZ)'Q7 N (X, — T1Z,)
t=1

T
= > (X -1z + 112 - TZ,) QN (X, - 11Z, + 112, — 11Z;)

t=1
T T
= > aala +2) g0 11z,
t=1 t=1
T
+ Y Zi@-1myQ (I -1z (4)



The middle term in (4) is zero, since
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= tr <Q—1(ﬂ — 1) ET: Zté;>

= 0.

where the last equality is due to the OLS first-order condition. The last term in (4), a
non-negative quadratic term, is thus the only one that involves II. It is now clear that I is
MLE of II.

It can also be shown that the MLE of 2 is given by

t=1
where
Et = Xt — ﬁZt
2.2 Likelihood Ratio Test
The maximized log likelihood is given by
Tr T 1<
-1 A A—1 A
L = —7log(27r) + §log (jQ7Y) - 2;529 &
Tr T 1 [&
=~ log(2) + 7 log (1Q71) - St ;égﬂ—lét

Tr T 1 [&
= —5 log(27) + 3 log (|Q71]) — §tr Z Qlét&ﬁ]

T T 1 74 A
= —771 log(27) + 7 log (|Q71]) — §tr Q_l(TQ)}



Tr

Tr T 1
= —TIOg(27r)+§log(|Q ) — 5

Let the empirical covariance matrix under restriction be €2y and that under no restriction

be (. The likelihood ratio test statistic is given by
2(L1—Ly)=T <log ‘Q()’ —log ’le :

Under the null hypothesis, this statistic has an asymptotic distribution of x?2,, where m is

the number of restrictions.

2.3 Granger Causality Test

We say (X;) does not Granger cause (Y;) if and only if for all m > 0 the mean squared error of

forecasting Yy, based on (Y3, Yi—1,...) does not exceed that based on (X, X¢—1,...,Y;, Vi1, ..

To test the Granger causality (or more precisely, non-causality) in VAR framework, we

write,
Yit1 a1l a1,12 Y; ap11  Ap12 Yi pt1 €1t
X1 a1 122 X ap21  Gp22 Xt—pt1 €9t

Let the null hypothesis be the assertion that X does not Granger cause Y. The null and

the alternative hypotheses are stated as follows,

Ho : a1p2=--=ap12=0

Hi : a;12#0 forsome 7i=1,..,p.

We may employ the usual F test,

p_ (58Ry — SSRy) Jp
- SSRy/(T—2p—1)’

).



where SS Ry and SSR; are, respectively, restricted and unrestricted sums of squared errors.

The Granger causality test is sensitive to the choice of p, the order of autoregression.
It is thus necessary to select p in an objective way. For example, we may select p that
minimizes some information criterion (e.g., AIC) before conducting the Granger causality

test.

3 Structural VAR

The structural VAR explicitly allows contemporary relation between variables. We write
the model as

BX; =B1 Xy 1+ -+ B, Xy + ey, (6)

where the covariance matrix of e, A, is a diagonal matrix. Compare the model with that
in (1), where the covariance matrix of ¢; is generally non-diagonal. We usually call the
model in (1) reduced-form VAR and that in (6) structural-form VAR. Correspondingly, the
residual vector &; in (1) is called reduced-form error, and e; in (6) the structural innovation.

The reduced-form error and the structural innovation are obviously related by

B&t = €.

Without restriction, the SVAR in (6) is not identified. That is, two SVAR with different
parameter values may reduce to the same reduced-form VAR, which implies the same data
generating process for (X;). Putting it another way, different SVAR’s may be observation-

ally equivalent. For example, consider the following two SVAR’s,

1 0 b =1 1 0
Xy = Xi—1+e, A=

11 b =15 01



1 5 b —1.25 b5 0
Xy = Xi—1+e, A=

0 1 0 -0.5 0 2

Both SVAR’s imply the following reduced-form VAR,

b5 —1 1 -1
Xi = X1 t+e, Y=
0 —-05 -1 2
To achieve identification, we normally impose restrictions on B. To see how many

restrictions are needed for identification, suppose a reduced-form VAR is given with error

covariance matrix ¥. Since we have,
BY.B' = A. (7)

The fact that A is a diagonal matrix generates r(r — 1)/2 restrictions on B, where r is the
dimension of X;. If there are r(r — 1)/2 free parameters in the matrix B, then the model is
identified. If there are less than r(r—1)/2 free parameters, then the model is over-identified.

Take the above example, if we specify

10
8 1

then B has one free parameter 3. Since there is one restriction, the model is identified as
follows,

1 -1
(10) 0 =B-1=0.
~1 2 1

Different specifications of matrix B yields different SVAR.
If B is identified, we may obtain B by solving (7). We may also obtain A using (7) and
calculate B; by B; = BA,;.



Impulse Response Function

We may write
[e.e] [e.@]
*
Xy = § Dier = E ey,
i=0 i=0

where e; is normalized from e; to have unit variance and we have
I; = dB~'AY2

Then the response in period ¢ of the p-th variable to an impulse in the ¢-th structural
innovation is given by (p, ¢)-th element in II;. Note that the unit shock in e} is identical
to one standard deviation shock to the corresponding e;. When B is restricted to a lower

triangular matrix with unit diagonals, we have an interesting equality,
B =AY,

where L is a lower triangular matrix from the Cholesky decomposition of 3. To see this,

note that BYB’ = (BL)(BL)' = A implies BL = A2, Then we have
II; = ®L.

Forecast Error Variance Decomposition

Write the k-step forecast error as

k—1

Kk — Ee Xy = Zﬂie;ﬁ-k—i‘
i=0

The forecast error variance of the p-th component of X, is then given by

k—1 T

2
D | 2w |-

1= 7j=1



where m; p; is the (p, j)-th element of the matrix II;. The g-th component of e; contributes

to the above forecast error variance by

k—1

2
Z Tipg-
i=0

This is called forecast error variance decomposition.

4 Multivariate Volatility Models

The multivariate volatility model improves on VAR by considering time-varying conditional

covariance matrix. To be more specific, write
Xt =t + wi,

where ji;, wy € R, iy = E(Xy¢|Fi_1), and ¥; = var(w;|Fi_1) is a time-varying covariance

matrix. As in univariate ARCH/GARCH models, we may represent w; as
Wt = Etl/QEt,

where ¢; is a vector of white noise with an identity covariance matrix. Multivariate volatility

modeling is concerned with the time-varying structure of ;.

4.1 Separable Multivariate GARCH

The simplest case would be the one where ¥; is diagonal for all ¢, and each element on the
diagonal satisfies one of various GARCH specifications. This treatment is equivalent to the
separate modeling of each element in w; as an univariate GARCH.

A more realistic model would require that

3t = DiC Dy,
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where C' is a constant correlation matrix and Dy is a time-varying diagonal matrix. Each
element on the diagonal of D; may be given a GARCH structure. This model is called a
CCC (Constant Conditional Correlation) model.

For example, consider a bivariate CCC model with,

Ct = )

where p is the constant conditional correlation coefficient.
Furthermore, we may specify that the correlation matrix be time-varying as well. A

common specification is given by

exp(zt)

P T exp(a)’

where z; may depend on some exogenous variables as well as lagged observations of p;, wy,

and o?. For example, we may impose a GARCH(1,1) structure on z as follows,

Wi t—1W2t—1

01t02t

n=c+a +bpt-1,

where ¢, a, and b are constant coeflicients.

4.2 General Multivariate GARCH
The diagonal vector error correction model (DVEC) specify 3; as
p q
Et =C+ ZAZ ® (wtwé) + ZBZ ® Et—i;
i=1 i=1

where ©® denotes Hadamard product, and C, (A;) and (B;) are all symmetric positive

definite matrices. We may call the above model as DVEC(p, ¢) model.
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To impose positive definitiveness on ¥;, we may specify

p q
i=1 i=1

where C, (A;), (B;) are all lower triangular matrices. This model may be called “matrix-

matrix” DVEC model.

We may define “vector-vector” DVEC by

P q
S =CC + > (aia}) © (wiw}) + Y (bib}) © Sy,
i=1 i=1
where (a;) and (b;) are nonzero vectors. Similarly we may define “scalar-scalar” DVEC and
hybrids such as “matrix-vector”, “scalar-vector”, etc.. The simpler the model is, the more
stringent restrictions are placed on the dynamics of the model.

To model richer dynamics in ¥, we may consider BEKK model, which is proposed in

Engle and Kroner (1995),

p q
Se=CC + ) Ai(ww))Aj + > BiSy_iB,
=1 =1

where C is lower triangular, and (A4;) and (B;) are unrestricted square matrices.



