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1 Introduction

In this chapter we consider vector-valued stochastic processes. We discuss VAR (Vector

AutoRegression), Structural VAR, and multivariate conditional variance-covariance models.

2 VAR

We consider an r-dimensional vector autoregression (VAR) of the following form,

Xt = A1Xt−1 + · · ·+ApXt−p + εt, (1)

where (Ai) are VAR coefficient matrices and εt ∼ WN(0,Σ). We call the above model p-th

order VAR model or VAR(p) model.

We may represent the model in (1) as

A(L)Xt = εt,

where L is lag operator and A(z) = I −A1z − · · · −Apz
p is a matrix of polynomials.

It is also useful to write the model in AR(1) form,

X∗
t = AX∗

t−1 + ε∗t , (2)
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where

X∗
t =



Xt

Xt−1

...

Xt−p+1


, A =



A1 · · · Ap−1 Ap

I

. . .

I


, ε∗t =



εt

0

...

0


.

The eigenvalues of the matrix A satisfies

|λpI − λp−1A1 − · · · −Ap| = 0.

For the covariance stationarity of (Xt), all eigenvalues of A should be within the unit circle,

so that any shock in εt eventually die out. This condition is equivalent to the one that

requires all roots of |A(z)| = 0 lie outside the unit circle.

When the above condition holds, (Xt) has an MA(∞) representation, Xt = Φ(L)εt,

where Φ(z) =
∑∞

i=0Φiz
i with Φi satisfying

∑∞
i=1 |Φi| < ∞. | · | here denotes any matrix

norm. The MA coefficients can be obtained from the power series expansion of A(z)−1,

which exists on the unit disk in the complex plane since it is analytic.

2.1 Maximum Likelihood Estimation

Let Π be an r × (rp) matrix of parameters defined as

Π = [A1 A2 · · · Ap].

If we define Zt = [X ′
t−1X

′
t−2 · · ·X ′

t−p]
′, we may write the original model in (1) as

Xt = ΠZt + εt.
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The conditional likelihood of Xt is

p(Xt, θ|Ft−1) = (2π)r/2
∣∣Ω−1

∣∣1/2 exp(−1

2
(Xt −ΠZt)

′Ω−1(Xt −ΠZt)

)
,

where θ is the vector of parameters. The likelihood for the full sample conditional on

(X0, X−1, . . . , X1−p) is thus given by

p(XT , . . . , Xt, θ) =
T∏
t=1

p(Xt, θ|Ft−1).

The log conditional likelihood to be maximized is

L = −Tr

2
log(2π) +

T

2
log
(
|Ω−1|

)
+

1

2

T∑
t=1

(Xt −ΠZt)
′Ω−1(Xt −ΠZt). (3)

We claim that the MLE of Π is the same as the OLS estimator:

Π̂ =

(
T∑
t=1

XtZ
′
t

)(
T∑
t=1

ZtZ
′
t

)−1

.

To show this, first note that the MLE of Π shall minimize the sum in the last term in (3),

which can be rewritten as

T∑
t=1

(Xt −ΠZt)
′Ω−1(Xt −ΠZt)

=

T∑
t=1

(Xt − Π̂Zt + Π̂Zt −ΠZt)
′Ω−1(Xt − Π̂Zt + Π̂Zt −ΠZt)

=
T∑
t=1

(ε̂t + (Π̂−Π)Zt)
′Ω−1(ε̂t + (Π̂−Π)Zt)

=

T∑
t=1

ε̂′tΩ
−1ε̂t + 2

T∑
t=1

ε̂′tΩ
−1(Π̂−Π)Zt

+
T∑
t=1

Z ′
t(Π̂−Π)′Ω−1(Π̂−Π)Zt. (4)
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The middle term in (4) is zero, since

T∑
t=1

ε̂′tΩ
−1(Π̂−Π)Zt = tr

(
T∑
t=1

ε̂′tΩ
−1(Π̂−Π)Zt

)

= tr

(
T∑
t=1

Ω−1(Π̂−Π)Ztε̂
′
t

)

= tr

(
Ω−1(Π̂−Π)

T∑
t=1

Ztε̂
′
t

)
= 0.

where the last equality is due to the OLS first-order condition. The last term in (4), a

non-negative quadratic term, is thus the only one that involves Π. It is now clear that Π̂ is

MLE of Π.

It can also be shown that the MLE of Ω is given by

Ω̂ =
1

T

T∑
t=1

ε̂tε̂
′
t,

where

ε̂t = Xt − Π̂Zt.

2.2 Likelihood Ratio Test

The maximized log likelihood is given by

L = −Tr

2
log(2π) +

T

2
log
(
|Ω−1|

)
− 1

2

T∑
t=1

ε̂′tΩ̂
−1ε̂t

= −Tr

2
log(2π) +

T

2
log
(
|Ω−1|

)
− 1

2
tr

[
T∑
t=1

ε̂′tΩ̂
−1ε̂t

]

= −Tr

2
log(2π) +

T

2
log
(
|Ω−1|

)
− 1

2
tr

[
T∑
t=1

Ω̂−1ε̂tε̂
′
t

]

= −Tr

2
log(2π) +

T

2
log
(
|Ω−1|

)
− 1

2
tr
[
Ω̂−1(T Ω̂)

]
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= −Tr

2
log(2π) +

T

2
log
(
|Ω−1|

)
− Tr

2
.

Let the empirical covariance matrix under restriction be Ω̂0 and that under no restriction

be Ω̂1. The likelihood ratio test statistic is given by

2 (L1 − L0) = T
(
log
∣∣∣Ω̂0

∣∣∣− log
∣∣∣Ω̂1

∣∣∣) .
Under the null hypothesis, this statistic has an asymptotic distribution of χ2

m, where m is

the number of restrictions.

2.3 Granger Causality Test

We say (Xt) does not Granger cause (Yt) if and only if for allm > 0 the mean squared error of

forecasting Yt+m based on (Yt, Yt−1, . . .) does not exceed that based on (Xt, Xt−1, . . . , Yt, Yt−1, . . .).

To test the Granger causality (or more precisely, non-causality) in VAR framework, we

write,

 Yt+1

Xt+1

 =

 a1,11 a1,12

a1,21 a1,22


 Yt

Xt

+ · · ·+

 ap,11 ap,12

ap,21 ap,22


 Yt−p+1

Xt−p+1

+

 ε1,t

ε2,t


(5)

Let the null hypothesis be the assertion that X does not Granger cause Y . The null and

the alternative hypotheses are stated as follows,

H0 : a1,12 = · · · = ap,12 = 0

H1 : ai,12 ̸= 0 for some i = 1, ..., p.

We may employ the usual F test,

F =
(SSR0 − SSR1) /p

SSR0/(T − 2p− 1)
,
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where SSR0 and SSR1 are, respectively, restricted and unrestricted sums of squared errors.

The Granger causality test is sensitive to the choice of p, the order of autoregression.

It is thus necessary to select p in an objective way. For example, we may select p that

minimizes some information criterion (e.g., AIC) before conducting the Granger causality

test.

3 Structural VAR

The structural VAR explicitly allows contemporary relation between variables. We write

the model as

BXt = B1Xt−1 + · · ·+BpXt−p + et, (6)

where the covariance matrix of et, Λ, is a diagonal matrix. Compare the model with that

in (1), where the covariance matrix of εt is generally non-diagonal. We usually call the

model in (1) reduced-form VAR and that in (6) structural-form VAR. Correspondingly, the

residual vector εt in (1) is called reduced-form error, and et in (6) the structural innovation.

The reduced-form error and the structural innovation are obviously related by

Bεt = et.

Without restriction, the SVAR in (6) is not identified. That is, two SVAR with different

parameter values may reduce to the same reduced-form VAR, which implies the same data

generating process for (Xt). Putting it another way, different SVAR’s may be observation-

ally equivalent. For example, consider the following two SVAR’s,

 1 0

1 1

Xt =

 .5 −1

.5 −1.5

Xt−1 + et, Λ =

 1 0

0 1


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0 1

Xt =

 .5 −1.25

0 −0.5

Xt−1 + et, Λ =

 .5 0

0 2

 .

Both SVAR’s imply the following reduced-form VAR,

Xt =

 .5 −1

0 −0.5

Xt−1 + εt, Σ =

 1 −1

−1 2

 .

To achieve identification, we normally impose restrictions on B. To see how many

restrictions are needed for identification, suppose a reduced-form VAR is given with error

covariance matrix Σ. Since we have,

BΣB′ = Λ. (7)

The fact that Λ is a diagonal matrix generates r(r − 1)/2 restrictions on B, where r is the

dimension of Xt. If there are r(r− 1)/2 free parameters in the matrix B, then the model is

identified. If there are less than r(r−1)/2 free parameters, then the model is over-identified.

Take the above example, if we specify

B =

 1 0

β 1

 ,

then B has one free parameter β. Since there is one restriction, the model is identified as

follows, (
1 0

) 1 −1

−1 2


 β

1

 = β − 1 = 0.

Different specifications of matrix B yields different SVAR.

If B is identified, we may obtain B by solving (7). We may also obtain Λ using (7) and

calculate Bi by Bi = BAi.
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Impulse Response Function

We may write

Xt =
∞∑
i=0

Φiεt−i =
∞∑
i=0

Πie
∗
t−i,

where e∗t is normalized from e∗t to have unit variance and we have

Πi = ΦB−1Λ1/2.

Then the response in period i of the p-th variable to an impulse in the q-th structural

innovation is given by (p, q)-th element in Πi. Note that the unit shock in e∗t is identical

to one standard deviation shock to the corresponding et. When B is restricted to a lower

triangular matrix with unit diagonals, we have an interesting equality,

B = Λ1/2L−1,

where L is a lower triangular matrix from the Cholesky decomposition of Σ. To see this,

note that BΣB′ = (BL)(BL)′ = Λ implies BL = Λ1/2. Then we have

Πi = ΦL.

Forecast Error Variance Decomposition

Write the k-step forecast error as

Xt+k − EtXt+k =
k−1∑
i=0

Πie
∗
t+k−i.

The forecast error variance of the p-th component of Xt+k is then given by

k−1∑
i=0

 r∑
j=1

π2
i,pj

 ,
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where πi,pj is the (p, j)-th element of the matrix Πi. The q-th component of et contributes

to the above forecast error variance by

k−1∑
i=0

π2
i,pq.

This is called forecast error variance decomposition.

4 Multivariate Volatility Models

The multivariate volatility model improves on VAR by considering time-varying conditional

covariance matrix. To be more specific, write

Xt = µt + ωt,

where µt, ωt ∈ Rd, µt = E(Xt|Ft−1), and Σt = var(ωt|Ft−1) is a time-varying covariance

matrix. As in univariate ARCH/GARCH models, we may represent ωt as

ωt = Σ
1/2
t εt,

where εt is a vector of white noise with an identity covariance matrix. Multivariate volatility

modeling is concerned with the time-varying structure of Σt.

4.1 Separable Multivariate GARCH

The simplest case would be the one where Σt is diagonal for all t, and each element on the

diagonal satisfies one of various GARCH specifications. This treatment is equivalent to the

separate modeling of each element in ωt as an univariate GARCH.

A more realistic model would require that

Σt = DtCDt,
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where C is a constant correlation matrix and Dt is a time-varying diagonal matrix. Each

element on the diagonal of Dt may be given a GARCH structure. This model is called a

CCC (Constant Conditional Correlation) model.

For example, consider a bivariate CCC model with,

Ct =

 1 ρ

ρ 1

 ,

where ρ is the constant conditional correlation coefficient.

Furthermore, we may specify that the correlation matrix be time-varying as well. A

common specification is given by

ρt =
exp(zt)

1 + exp(zt)
,

where zt may depend on some exogenous variables as well as lagged observations of ρt, ωt,

and σ2
t . For example, we may impose a GARCH(1,1) structure on zt as follows,

zt = c+ a
ω1,t−1ω2,t−1

σ1tσ2t
+ bρt−1,

where c, a, and b are constant coefficients.

4.2 General Multivariate GARCH

The diagonal vector error correction model (DVEC) specify Σt as

Σt = C +

p∑
i=1

Ai ⊙ (ωtω
′
t) +

q∑
i=1

Bi ⊙ Σt−i,

where ⊙ denotes Hadamard product, and C, (Ai) and (Bi) are all symmetric positive

definite matrices. We may call the above model as DVEC(p, q) model.
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To impose positive definitiveness on Σt, we may specify

Σt = CC ′ +

p∑
i=1

(AiA
′
i)⊙ (ωtω

′
t) +

q∑
i=1

(BiB
′
i)⊙ Σt−i,

where C, (Ai), (Bi) are all lower triangular matrices. This model may be called “matrix-

matrix” DVEC model.

We may define “vector-vector” DVEC by

Σt = CC ′ +

p∑
i=1

(aia
′
i)⊙ (ωtω

′
t) +

q∑
i=1

(bib
′
i)⊙ Σt−i,

where (ai) and (bi) are nonzero vectors. Similarly we may define “scalar-scalar” DVEC and

hybrids such as “matrix-vector”, “scalar-vector”, etc.. The simpler the model is, the more

stringent restrictions are placed on the dynamics of the model.

To model richer dynamics in Σt, we may consider BEKK model, which is proposed in

Engle and Kroner (1995),

Σt = CC ′ +

p∑
i=1

Ai(ωtω
′
t)A

′
i +

q∑
i=1

BiΣt−iB
′
i,

where C is lower triangular, and (Ai) and (Bi) are unrestricted square matrices.


