
1

Conditional Heteroscedasticity

May 30, 2010

Junhui Qian

1 Introduction

ARMA(p,q) models dictate that the conditional mean of a time series depends on past

observations of the time series and the past innovations. Let µt = E(Xt|Ft−1), we have for

an ARMA(p,q) process,

µt = a1Xt−1 + · · ·+ apXt−p + b1εt−1 + · · ·+ bqεt−q.

If we assume εt ∼ i.i.d. with zero mean and finite variance, then the conditional variance

of Xt is a constant, regardless of the order p or q,

var(Xt|Xt−1, Xt−2, ...) = var(εt) < ∞.

In this chapter we relax this constraint and consider time-varying conditional variance.

2 ARCH and GARCH Models

To introduce time-varying conditional variance to the model, we write

Xt = µt + ωt,

where µt is the conditional mean as above and ωt is a white noise with time-varying condi-

tional variance (conditional heteroscedasticity). Specifically, we write

ωt = σtεt, (1)
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where εt is a strong white noise with zero mean and unit variance, ie, εt ∼ iid(0, 1). And

σ2
t is the conditional variance of Xt, ie, σ

2
t = var(Xt|Xt−1, Xt−2, ...).

For ARCH and GARCH models, σ2
t evolves over time in a deterministic manner. For

example, in the simplest ARCH(1) model, σ2
t is specified as

σ2
t = c+ aω2

t−1, (2)

where c > 0 and a ≥ 0. The positiveness of a implies that the probability of getting a large

shock in ωt is high when there is a big shock in ωt−1. ARCH(1) model thus describes the

volatility clustering to some extent.

More generally, we have ARCH(p) model which is specified as

Definition: ARCH(p) Model

σ2
t = c+ a1ω

2
t−1 + · · ·+ apω

2
t−p, (3)

where c > 0, ai ≥ 0 for all i.

The ARCH(p) component ωt has following properties.

(a) Let ηt = ω2
t −σ2

t . (ηt) is a martingale difference sequence, ie, E(ηt|Xt−1, Xt−2, ...) = 0.

(b) (ω2
t ) has an AR(p) form.

(c) (σ2
t ) has an AR(p) form with random coefficients,

σ2
t = c+

p∑
i=1

(aiε
2
t−i)ω

2
t−i. (4)

(d) (ωt) is a white noise with a (unconditional) variance of var(ωt) = c/(1−a1−· · ·−ap).

(e) The (unconditional) distribution of ωt is leptokurtic.
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For the ARCH(1) model in (2) in particular, var(ωt) = c/(1− a). Since variance has to be

positive, we must have 0 < a < 1. And if we assume εt ∼ iid N(0, 1), we can calculate the

fourth moment of ωt,

E(ω4
t ) =

3c2(1 + a)

(1− a)(1− 3a2)
.

And the (unconditional) kurtosis of ωt is thus,

Kurtosis(ωt) =
E(ω4

t )

[var(ωt)]2
= 3

1− a2

1− 3a2
> 3. (5)

Since the kurtosis of ωt is greater than 3, the kurtosis of normal distribution, the tail of

the distribution of ωt is heavier or longer than the normal, which is saying large shocks are

more probable for ωt than a normal series. Of course, to ensure the kurtosis in (5) to be

positive, we must have 1− 3a2 > 0, hence a is restricted to [0,
√
3/3).

One weakness of ARCH(p) models is that it may need many lags, ie, a big p, to fully

absorb the correlation in ω2
t . In the same spirit of the extension from AR to ARMA models,

Bollerslev (1986) proposes GARCH model, which specifies the conditional variance σ2
t as

follows.

Definition: GARCH(p, q) Model

σ2
t = c+ a1ω

2
t−1 + · · ·+ apω

2
t−p + b1σ

2
t−1 + · · ·+ bqσ

2
t−q, (6)

where c > 0, ai ≥ 0, bi ≥ 0 for all i, and
∑max(p,q)

i=1 (ai + bi) < 1.

It is obvious that the GARCH model is a generalization of the ARCH model. If bi = 0

for all i, GARCH(p, q) reduces to ARCH(p). The GARCH component ωt has following

properties.

(a) Let ηt = ω2
t −σ2

t . (ηt) is a martingale difference sequence, ie, E(ηt|Xt−1, Xt−2, ...) = 0.
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(b) Let r = max(p, q), (ω2
t ) has an ARMA(r, q) form,

ω2
t = c+

r∑
i=1

(ai + bi)ω
2
t−i + ηt −

q∑
i=1

biηt−i, (7)

where (ai) or (bi) were padded with zero to have a length of r if necessary.

(c) (σ2
t ) has an AR(r) form with random coefficients,

σ2
t = c+

r∑
i=1

(aiε
2
t−i + bi)ω

2
t−i. (8)

(d) ωt is a white noise, with an (unconditional) variance of var(ωt) = c/(1−
∑p

i ai−
∑q

i bi).

(e) The (unconditional) distribution of ωt is leptokurtic.

GARCH(1,1) is perhaps the most popular model in practice. The conditional variance

is specified as follows,

σ2
t = c+ aω2

t−1 + bσ2
t−1, (9)

where c > 0, a > 0, b > 0, and a+ b < 1.

If 1− 2a2 − (a+ b)2 > 0,

Kurtosis(ωt) =
E(ω4

t )

[var(ωt)]2
= 3

1− (a+ b)2

1− (a+ b)2 − 2a2
> 3.

3 Identification, Estimation, and Forecasting

Since ARCH model is a special case of GARCH, we will focus on GARCH hereafter.

3.1 Identification

For all GARCH models, the square of the GARCH component, ω2
t , is serially correlated.

This gives us a test on whether a given process is GARCH – we may simply use the Ljung-

Box test on ω2
t .
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We may also use Engle’s (1982) Lagrange test. This test is equivalent to the F -test on

ai = 0 for all i in the following regression,

ω2
t = c+ a1ω

2
t−1 + · · ·+ a2mωt−m + ηt,

where m is a predetermined number.

To determine the order of ARCH(p), we may examine the PACF of ω2
t . If we believe

the model is GARCH(p = 0, q), then we may use the ACF of ω2
t to determine q.

Finally, we may use information criteria such as AIC to determine the order of GARCH(p,

q).

3.2 Estimation

Maximum likelihood estimation is commonly used in estimating GARCH models. Assume

εt ∼ N(0, 1), the log likelihood function of GARCH(p, q) is

l(θ|ω1, ..., ωT ) = log [f(ωT |FT−1)f(ωT−1|FT−2) · · · f(ωp+1|Fp)f(ω1, ..., ωp; θ)]

= log f(ω1, ..., ωp; θ) log

 T∏
t=p+1

1√
2πσ2

t

(
− ω2

t

2σ2
t

)
= log f(ω1, ..., ωp; θ)

−1

2

T∑
t=p+1

(
log(2π) + log(σ2

t ) +
ω2
t

σ2
t

) ,

where θ is the set of parameters to be estimated, f(ωs|Fs−1) is the density of ωt conditional

on the information contained in (ωt) up to time s − 1, and f(ω1, ..., ωp; θ) is the joint

distribution of ω1, ..., ωp.

Since the form of f(ω1, ..., ωp; θ) is rather complicated, the usual practice is to ignore

this term and to use conditional log likelihood instead,

l(θ|ω1, ..., ωT ) = −1

2

T∑
t=p+1

(
log(2π) + log(σ2

t ) +
ω2
t

σ2
t

)
. (10)
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Note that the σ2
t in the above log likelihood function is not observable and has to be

estimated recursively,

σ2
t = c+ a1ω

2
t−1 + · · ·+ apω

2
t−p + b1σ

2
t−1 + · · ·+ bqσ

2
t−q.

The initial values of σ2
t are usually assigned to be the unconditional variance of ωt, which

is c/(1−
∑

i ai −
∑

i bi).

To check whether a model is adequate, we may examine the following series,

ε̂t =
ωt

σ̂t
.

If the model is adequate and it is appropriately estimated, (ε̂t) should be iid normal. We

may apply Ljung-Box test to (ε̂t) to see if the conditional mean, µt in (??), is correctly

specified. We may apply Ljung-Box test to (ε̂2t ) to see if the model of ωt is adequate.

Finally, we may use Jarque-Bera Test and QQ-plot to check whether εt is normal.

We may, of course, use other distribution for the specification of εt. For example, one

popular choice is the Student-t, which has heavier tails than the normal distribution. For

the purpose of consistently estimating GARCH parameters such as (ai) and (bi), the choice

of distribution does not matter much. It can be shown that maximizing the log likelihood

in (10) yields consistent estimator even when the distribution of εt is not normal. This is

called quasi-likelihood estimation.

3.3 Forecasting

Forecasting volatility is perhaps the most interesting aspect of GARCH model in practice.

For one-step-ahead forecast, we have

σ2
T+1 = c+ a1ω

2
T + · · ·+ apω

2
T−p+1 + b1σ

2
T + · · ·+ bqσ

2
T−q+1,
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where (ω2
T , ..., ω

2
T−p+1) and (σ2

T , ..., σ
2
T−q+1) are known at time T . Note that the one-step-

ahead forecast is deterministic.

For two-step-ahead forecasting, we have

σ̂2
T+2 = c+ a1E(ω2

T+1|FT ) + a2ω
2
T + · · ·+ apω

2
T−p+2 + b1σ

2
T+1 + b2σ

2
T + · · ·+ bqσ

2
T−q+2

= c+ a2ω
2
T + · · ·+ apω

2
T−p+2 + (a1 + b1)σ

2
T+1 + b2σ

2
T + · · ·+ bqσ

2
T−q+2.

n-step-ahead forecast can be constructed similarly. For GARCH(1, 1) model in (9), the

n-step-ahead forecast can be written as

σ̂2
T+n =

c(1− (a+ b)n−1)

1− a− b
+ (a+ b)n−1σ2

T+1 →
c

1− a− b
,

as n goes to infinity. c
1−a−b is exactly the unconditional variance of ωt.

4 Extensions

There are many extensions to the GARCH model. In this section we discuss four of them,

Integrated GARCH (IGARCH), GARCH in mean (GARCH-M), APGARCH, and Expo-

nential GARCH (EGARCH).

4.1 IGARCH

When the ARMA representation in (7) of a GARCH model has a unit root in its AR

polynomial, the GARCH model is integrated in ω2
t . The model is then called Integrated

GARCH, or IGARCH.

The key feature of IGARCH lies in the implication that any shock in volatility is per-

sistent. This is similar with ARIMA model, in which any shock in mean is persistent. Take
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the example of IGARCH(1, 1) model, which can be written as,

ωt = σtεt, σ2
t = c+ bσ2

t−1 + (1− b)ω2
t−1.

The shock in volatility is given by ηt = ω2
t − σ2

t . Then

ω2
t = c+ ω2

t−1 + ηt − bηt−1.

To forecast volatility in the IGARCH(1, 1) framework, we first have

σ2
T+1 = c+ bσ2

T + (1− b)ω2
T .

Then we have

σ̂2
T+2 = c+ σ2

T+1

σ̂2
T+3 = c+ σ̂2

T+2 = 2c+ σ2
T+1

· · ·

σ̂2
T+n = (n− 1)c+ σ2

T+1

The case when c = 0 is especially interesting. In this case, the volatility forecasts

σ̂2
T+n = σ2

T+1 for all n. This approach is indeed adopted by RiskMetrics for the calculation

of VaR (Value at Risk).

4.2 GARCH-M

To model premium for holding risky assets, we may let the conditional mean depend on

the conditional variance. This is the idea of GARCH in mean, or GARCH-M. A typical
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GARCH-M may be written as

Xt = µt + ωt, µt = α′zt + βσ2
t , ωt = σtεt, (11)

where zt is a vector of explanatory variables and the specification for σ2
t is the same as in

GARCH models.

4.3 APGARCH

To model leverage effects, which make volatility more sensitive to negative shocks, we may

consider the Asymmetric Power GARCH of Ding, Granger, and Engle (1993). A typical

APGARCH(p, q) can be written as

σδ
t = c+

q∑
i=1

ai(|εt−i|+ γiεt−i)
δ +

p∑
i=1

biσ
δ
t−i, (12)

where δ, c, (γi), (ai), and (bi) are model parameters.

The impact of εt−i on σδ
t is obviously asymmetric. Consider the term g(εt−i, γi) =

|εt−i|+ γiεt−i. We have

g(εt−i, γi) =

 (1 + γi)|εt−i|, if εt−i ≥ 0

(1− γi)|εt−i|, if εt−i < 0.

We expect γi < 0.

The APGARCH model includes several interesting special cases,

(a) GARCH, when δ = 2 and γi = 0 for all i

(b) NGARCH of Higgins and Bera (1992), when γi = 0 for all i.

(c) GJR-GARCH of Glosten, Jagannathan, and Runkle (1993), when δ = 2 and −1 ≤

γi ≤ 0,
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(d) TGARCH of Zakoian (1994) when δ = 1 and −1 ≤ γi ≤ 0,

(e) Log-GARCH, when δ → 0 and γi = 0 for all i.

4.4 EGARCH

To model leverage effects, we may also consider Exponential GARCH, or EGARCH, pro-

posed by Nelson (1990). An EGARCH(p, q) model can be written as

ht = log σ2
t , ht = c+

p∑
i=1

ai (|εt−i|+ γiεt−i) +

q∑
i=1

biht−i. (13)

As in APGARCH, we expect γi < 0. When εt−i > 0 (there is good news), the impact of

εt−i on ht is (1 + γi)|εt−i|. If εt−i < 0 (bad news), the impact is (1− γi)|εt−i|.

5 Stochastic Volatility Models

In all ARCH and GARCH models, the evolution of the conditional variance σ2
t is determin-

istic, conditional on the information available up to time t− 1.

SV (Stochastic Volatility) models relax this constraint and posit that the volatility itself

is random. A typical SV model may be defined as

ωt = σεt, β(L) log(σ2
t ) = c+ vt, (14)

where c is a constant, β(z) = 1− b1z − · · · − bqz
q, and (vt) is iid N(0, σ2

v).

The SV model can be estimated using quasi-likelihood methods via Kalman filtering or

MCMC (Monte Carlo Markov Chain). Some applications show that SV models provide bet-

ter performance in terms of model fitting. But their performance in out-of-sample volatility

forecasts is less convincing.
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Appendix

5.1 Ljung-Box Test

The Ljung-Box test is a test of whether any of a group of autocorrelations of a time series

are different from zero. It is a joint test based on a number of lags and is therefore a

portmanteau test.

The Ljung-Box test statistic is defined as,

Q = n (n+ 2)

h∑
k=1

ρ̂2k
n− k

,

where n is the sample size, ρ̂k is the sample autocorrelation at lag k, and h is the number

of lags being tested. Q is asymptotically distributed as the chi-square distribution with

h degrees of freedom. The LjungCBox test is commonly used in model diagnostics after

estimating time series models.

5.2 Jarque-Bera Test

The Jarque-Bera test can be used to test the null hypothesis that the data are from a

normal distribution, based on the sample kurtosis and skewness. The test statistic JB is

defined as

JB =
n

6

(
S2 + (K − 3)2/4

)
,

where n is the number of observations, S the sample skewness, and K the sample kurtosis.

JB is distributed as χ2
2. The null hypothesis is a joint hypothesis of both the skewness

and excess kurtosis being 0, since samples from a normal distribution have an expected

skewness of 0 and an expected excess kurtosis of 0.


