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1 Introduction

A time series is a time-indexed sequence of random variables. We may also call (Xt) a

stochastic process or simply “process”. 1

We write a generic time series as X = (Xt, t ∈ T ), where T is an index set. The set

T may be discrete, in which case X is called a discrete-time process. And T may be a

continuous time interval, in which case X is called a continuous-time process. In this course

we will focus on the discrete-time processes.

To fix ideas, we denote the probability triple as (Ω,F ,P), where Ω is the sample space,

F is the space of events (σ-algebra of Ω), and P is the probability measure.

A time series X is a mapping from the product space of Ω×T to R. We may write this

mapping as Xt = Xt(ω) = X(ω, t). It is obvious that X(t, ·) is a r.v. and X(·, ω) is called

a sample path.

A filtration is a non-decreasing indexed sequence of σ-fields (Ft). (Fs) ⊂ (Ft) if s < t.

A filtration is an ever-finer sequence of information sets.

σ-field generated by a r.v. X – σ(X) is defined as

σ(X) = {X−1(B)|B ∈ B(R)},

where B(R) denotes the Borel σ-field of R. Roughly speaking, σ(X) is the set of all infor-

mation we may know through observation of X.

The natural (or standard) filtration of a time series X = (Xt) is given by Ft =

σ((Xs)s≤t), which is roughly information contained in X up to time t.

1In some textbooks, a time series is considered a realization of the underlying stochastic process. We do
not differentiate these two terms.
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2 Ergodicity, Stationarity, and Mixing Properties

2.1 Ergodicity

As in other areas of econometrics, the objectives of time series analysis consist in inference

and forecast. To have some chance of success, we need to focus on series with some nice

properties. One important property of time series is ergodicity, which dictates that the

sample moments of a series converges to the corresponding population moments, if the

latter exist.

Definition X = (Xt) is “mean ergodic” if

lim
T→∞

E

(
1

T

T∑
t=1

Xt − µ

)2

= 0,

and “variance ergodic” if

lim
T→∞

E

(
1

T

T∑
t=1

(Xt − µ)2 − σ2

)2

= 0.

Unfortunately, the ergodicity properties cannot be verified and hence have to be assumed.

In order to be ergodic, a stochastic process must be in some kind of equilibrium. Sta-

tionarity characterizes one such kind of equilibrium.

2.2 Stationarity

Definition. A time series X = (Xt) is (strictly) stationary if the joint distribution of

(Xt1+h, ..., Xtk+h) is independent of h for every t1, ..., tk ∈ T .

Definition. A time series X = (Xt) is weakly stationary if the first two moments of

(Xt1+h, ..., Xtk+h) exist and are independent of h for every t1, ..., tk ∈ T .

Weak stationarity can be checked. We define autocovariance function and auto-correlation



3

function (ACF) at lag h as

γX(h) = cov(Xt, Xt+h), ρX(h) =
γX(h)

γX(0)
.

It is obvious that for both stationary and weakly stationary processes, γX and ρX are well

defined.

An i.i.d. time series is a special case of strictly stationary process.

White noise is a special case of weakly stationary process. Xt is called a white noise if

Xt is zero-mean and

γX(h) =

 σ2, if h = 0,

0, if h ̸= 0.

If, in addition, Xt is i.i.d., it is called a strong white noise.

White noise is an important building block for constructing other series. Often we may

think of white noise as innovations or shocks to the economic system. These shocks may be

nonindependent, but must be uncorrelated. Indeed, an important class of white noises are

ARCH/GARCH processes, which are serially uncorrelated but nonindependent.

3 Data Preprocessing

Most analytical and technical machineries in time series are developed for stationary pro-

cesses. However, stationarity is a restrictive assumption for most time series we see in

practice. Two most common violations of stationarity are trend/cycle and seasonality.

Trend/cycle is long term (low frequency) variation over time, and seasonality is regular

cyclic movement typically seen in monthly and quarterly data. Many macroeconomic time

series such as GDP and CPI, exhibit both trend/cycle and seasonal movements.

To apply machineries that are developed for stationary time series, we must preprocess

data so that the stationarity assumption is more plausible for the transformed data.
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3.1 Least Square Detrending

We may assume that a time series Xt can be decomposed into the sum of a deterministic

time trend and a stationary process,

Xt = dt + wt,

where dt =
∑m

i=0 βit
i is deterministic and wt is a zero-mean stationary process. If this

assumption is plausible, we may subtract the time trend from Xt. This practice is called

detrending.

Of course dt is not observable and hence has to be estimated. We may fix an integer for

m, the degree of time polynomial, and estimate β0, β1, ..., βm by minimizing

m∑
i=0

(
Xt − βit

i
)2
.

This is an ordinary least square problem.

3.2 Log Difference

Many macroeconomic and financial time series exhibit exponential trend. For this type of

series, taking log difference may yield plausibly stationary processes. The log difference is

defined by

rt = log(Xt/Xt−1).

If Xt/Xt−1 is close to one, then the above expression may be approximated by Xt/Xt−1−1.

3.3 Seasonal Adjustment

Seasonal adjustment may be done by compare year-on-year changes. For example, it is

common practice to look at the GDP growth rates of the same quarter, log(GDPt/GDPt−4).

Another simple way to adjust seasonality is to take averages. For example, we may
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calculate the seasonal adjusted GDP as,

GDPsa,t = (GDPt +GDPt−1 +GDPt−2 +GDPt−3)/4.

There are more advanced ways to eliminate seasonal movement. See X-12-ARIMA and

Tramo/Seats.

3.4 Filtering

A general way to transform a nonstationary series into a stationary one is by linear filtering.

Let L denote lag operator. A linear filter Φ is defined by Yt = Φ(L)Xt ≡
(∑

i∈Z ϕiL
i
)
Xt.

If ϕi = 0 for all i < 0, then the filter is called “causal”.

Special cases of linear causal filters are difference operator ∇Xt = (1 − L)Xt, seasonal

difference ∇kXt = (1− Lk)Xt, etc.

4 Pre-Analysis

4.1 Descriptive Statistics

To summarize distributional information in a time series data, we calculate statistics such

as sample mean, variance, skewness, kurtosis, median (50% quantile) and other quantiles.

4.2 Sample Mean

We usually use sample mean, X̄ = 1
T

∑T
t=1Xt, to estimate the corresponding population

mean µ. Under general conditions, X̄ is a consistent estimator of µ, and
√
T (X̄ − µ) →

N(0, V ), where V =
∑

k γ(k).

To test hypotheses on the mean, however, we need reliable estimator for V . The obvious
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choice V̂ =
∑

k γ̂(k) is inaccurate since the quality of γ̂(k) deteorietes as k → T , since

γ̂(k) =
1

T − k

T∑
t=k+1

(Xt − X̄)(Xt−k − X̄).

Instead, we may use the method of “batched means” or “blockwise bootstrap”.

In the following, since the population mean can be reliably estimated, we only consider

zero-mean stationary time series.

4.3 ACF and PACF

A powerful tool for identifying time series models is autocorrelation function (ACF). It is

defined for weakly stationary processes, say, Xt,

ρk =
cov(Xt, Xt−k)

var(Xt)
=
γk
γ0
. (1)

The sample counterpart is

ρ̂k =

∑T
t=k+1(Xt − X̄)(Xt−k − X̄)∑T

t=1(Xt − X̄)2
, 0 ≤ k < T − 1, (2)

where X̄ = 1
T

∑
tXt.

The ACF defined in (1) is meaningless for nonstationary time series. Nonetheless, the

sample ACF is routinely examined for apparently nonstationary time series in empirical

studies. Figure 1 examines the sample ACF’s of six time series. The three categories

(stationary, unit root, and seasonal time series), each of which corresponds to each row,

exhibit stark differences in the form of the sample ACF.

ACF cannot take it into account that Xt−k might be correlated with Xt through in-

termediate observations, say, Xt−l, 0 < l < k. PACF (Partial ACF) examines the direct

correlation between Xt−k and Xt, excluding the intermediary effect of Xt−l, 0 < l < k.

This is done through multiple linear regression of Xt on Xt−k, controlling for intermedi-
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Figure 1: Sample ACF’s for the data mentioned above. For the first row, each lag on X-axis
corresponds to one day. For others, each unit of lag corresponds to one year. The ACF of
M0 is calculated on detrended data.
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aries. Specifically, to calculate k-order PACF, we write

Xt = ϕk0 + ϕk1Xt−1 + · · ·+ ϕkkXt−k + ϵt, (3)

where ϕki, i = 0, ..., k, are regression coefficients. We define k-order PACF as

PACF(k) = ϕkk. (4)

Figure 2 shows the PACF’s of the six time series examined above. We will be better

equipped to read these diagrams as we go on. For now, we start from the basics. In the rest

of this chapter, we introduce basic linear models of time series in the order of white noise,

autoregressive (AR) models, moving average (MA) models, ARMA, ARIMA, and seasonal

models.

4.4 Nonparametric Statistics

We may estimate density functions directly using kernel smoothing. For a stationary time

series of vectors (Xt ∈ Rd), the joint distribution may be obtained by

f̂(x) =
1

Thd

T∑
t=1

K

(
x−Xt

h

)
, x ∈ Rd,

where K(·) is a bounded symmetric density such that

lim
∥u∥→∞

∥u∥dK(u) = 0, and

∫
Rd

∥u∥2K(u)du <∞,

where ∥ · ∥ is any norm over Rd.

To see how Y = (Yt ∈ R) may be dependent on X = (Xt ∈ Rd), we may estimate the

following nonparametric regression,

Yt = r(Xt) + ut,
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Figure 2: Sample PACF’s. For the first row, each lag on X-axis corresponds to one day. For
others, each unit of lag corresponds to one year. The ACF of M0 is calculated on detrended
data.
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where r(·) is a smooth function. A popular estimator of r(·) is given by

r̂(x) =

∑T
t=1 YtK

(
x−Xt

h

)∑T
t=1K

(
x−Xt

h

) , x ∈ Rd.

This estimator is called Nadaraya-Watson or locally constant estimator.

Under suitable conditions, both f̂(x) and r̂(x) behave satisfactorily as T → ∞. f̂(x)

and r̂(x) usually serve as preliminary analysis. We refer to Bosq (1998) for an in-depth

study of nonparametric statistics for stochastic processes.

5 Important Definitions and Theorems

5.1 Mixing Properties

Mixing is a measure of how dependent between two information sets. Let (Ω,F ,P) be a

probability space and let B and C be two sub σ-field of F . We define:

• α = α(B, C) = supB∈B,C∈C |P(B
∩
C)− P(B)P(C)|,

• ϕ = ϕ(B, C) = supB∈B,C∈C,P(B)>0 |P(C)− P(C|B)|,

• β = β(B, C) = E supC∈C |P (C)− P (C|B)|,

• ψ = ψ(B, C) = supB∈B,C∈C,P(B),P(C)>0,

∣∣∣ P(B∩
C)

P(B)P(C) − 1
∣∣∣,

• ρ = ρ(B, C) = supX∈L2(B),X∈L2(C) |corr(X,Y )|.

These coefficients satisfy the following inequalities:

2α ≤ β ≤ ϕ ≤ ψ and 4α ≤ ρ ≤ 2ϕ1/2 (5)

Definition. A process X = (Xt) is α-mixing (or strongly mixing) if

αk = sup
t
α(σ(Xs, s ≤ t), σ(Xs, s ≥ t+ k)) → 0, as k → ∞,
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where the sup may be omitted if X is stationary. Similarly we may define β-mixing, ψ-

mixing, ϕ-mixing, and ρ-mixing.

The inequalities in (5) implies that ψ-mixing ⇒ ϕ-mixing ⇒ β-mixing ⇒ α-mixing,

and ϕ-mixing ⇒ ρ-mixing ⇒ α-mixing. Hence α-mixing is the weakest among the five

and ψ-mixing the strongest. ψ-mixing, ϕ-mixing, and β-mixing are often too restrictive for

applications.

If X is a Gaussian stationary ϕ-mixing process, then it is m-dependent, ie, for some m,

σ(Xs, s ≤ t) and σ(Xs, s ≤ t+ k) are independent for k > m. And for a Gaussian process,

since ρk ≤ 2παk, α-mixing and ρ-mixing are equivalent.

Finally, we state two useful inequalities. Let X and Y be two real valued variables such

that X ∈ Lq(P), and Y ∈ Lr(P) where q > 1, r > 1, and 1
q +

1
r = 1− 1

p , then

|cov(X,Y )| ≤ 2p(2α)1/p∥X∥q∥Y ∥r, (6)

where α = α(σ(X), σ(Y )). If in particular, X ∈ L∞(P), and Y ∈ L∞(P), then

|cov(X,Y )| ≤ 4α∥X∥∞∥Y ∥∞. (7)

5.2 Convergence

In this subsection, for more generality and for consistency with standard texts on the

subject, we use subscript n instead of t.

Definition: Modes of Convergence. Let (Xn) be sequence of random variables on a

probability space (Ω,F ,P), and let X be another random variable on the same space. We

define

• Xn → X pointwise if Xn(ω) → X(ω) for all ω ∈ Ω

• Xn → X almost surely (a.s.) (Xn →a.s. X) if {ω : Xn(ω) 9 X(ω)} is a null set.
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• Xn → X in probability (Xn →p X) if, for all ϵ > 0, P(|Xn −X| > ϵ) → 0.

• Xn → X in L1 (or in mean) if E|Xn −X| → 0.

• Xn → X in L2 (or in mean square) if E|Xn −X|2 → 0.

• Xn → X in distribution (Xn →d X) if FXn(x) → FX(x) for every continuity point of

FX .

We can establish that pointwise convergence implies almost sure convergence; that L2

convergence implies L1 convergence; that almost sure convergence and L1 convergence im-

ply convergence in probability; and that convergence in probability implies convergence in

distribution. The inverse directions do not hold in general. However, Lévy’s dominated

convergence theorem (see below) provides a sufficient condition for almost sure convergence

or convergence in probability to imply L1 convergence.

L1 and L2 convergences are special cases of Lr convergence, which is defined as E|Xn −

X|r → 0 as n→ ∞. Lr denotes a space {X ∼ r.v.|E|X|r <∞} with a metric ∥X − Y ∥r =

(E|X − Y |r)1/r. Convergence in Lr means that the distance between Xn and X tends to 0.

Convergence in distribution is also called weak convergence, in the sense that it is equiv-

alent to Ef(Xn) → Ef(X) for every bounded and uniformly continuous f . Convergence in

distribution may also be defined by convergence in characteristic functions, ϕn(τ) → ϕ(τ)

for all τ ∈ R, where ϕn and ϕ are characteristics functions for Xn and X, respectively. And

we have

Continuous Mapping Theorem. Let f be a continuous function. Then if Xn →d X,

then f(Xn) →d f(X). The conclusion also holds for convergence a.s. and in probability.

We also have,

Slutsky Theorem. If Xn →d X and Yn →d c for a constant c, then

(a) Xn + Yn →d X + c,
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(b) XnYn →d cX,

(c) Xn/Yn →d X/c with c ̸= 0.

Note that it is not necessary for a sequence of random variables to be defined on the

same probability space to converge in distribution to a random variable X which is also not

necessarily on the same probability space as Xn. However, we do have,

Skorokhod Representation Theorem. Let (Xn) be a sequence of random variables

(not necessarily all defined on the same probability space), and assume that Xn → X (with

X not necessarily on the same probability space as the Xn). Let Fn be the distribution

function of Xn and let F be the distribution function of X. Then there exists a probability

space (Ω,F ,P) and random variables Yn and Y , all defined on (Ω,F ,P), such that Y has

distribution function F and each Yn has distribution function Fn, and Yn →a.s. Y as n→ ∞.

Lévy’s Dominated Convergence Theorem. If a sequence of random variables (Xn, n =

1, 2, ...) satisfies Xn →a.s. X, |Xn| < Y , where Y is a random variable with EY < ∞, then

it follows that E|X| <∞, EXn → EX, and E|Xn −X| → 0.

The stronger result which only need Xn →p X is also true. This theorem provides a

sufficient condition for the almost sure convergence (or convergence in probability) to imply

L1-convergence. The condition |Xn| < Y and EY < ∞ could be relaxed. Instead, the

sequence (Xn) should be uniformly integrable. The theorem is a special case of Lebesgue’s

dominated convergence theorem in measure theory.

Monotone Convergence Theorem. Let (Xn) be a non-decreasing sequence of nonneg-

ative random variables. If Xn → X pointwise, then Xn → X in L1.
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5.3 Law of Large Numbers

5.3.1 Classical LLN

5.3.2 LLN for Dependent Processes

Let Xt be a weakly stationary process with mean µ and covariances γk which satisfy

∞∑
k=−∞

|γk| <∞,

then we have

X̄T ≡ 1

T

T∑
t=1

Xt →L2 µ.

In words, Xt is mean ergodic if autocovariances decline fast enough.

To show this, we write

E
(
X̄T − µ

)2
=

1

T 2
E

(∑
t

Xt − µ

)2

(8)

=
1

T

{
γ0 +

T−1∑
k=1

(T − k)/T (2γk)

}
(9)

≤ 1

T

{
|γ0|+

T−1∑
k=1

(T − k)/T (2|γk|)

}

≤ 1

T

{
|γ0|+

T−1∑
k=1

(2|γk|)

}
→ 0.

Interestingly, we have

TE
(
X̄T − µ

)2
=

∞∑
k=−∞

γk.

Note that in (??), autocovariances with large k are negligible and those with small k are

given an approximately unit weight.
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5.4 Central Limit Theorems

5.4.1 Classical CLT

Lindeberg-Lévy. Let (Xi) be a sequence of i.i.d. random variables such that EXi = µ

and var(Xi) = σ2 <∞, then

√
n(X̄ − µ) →d N(0, σ2).

Lindeberg-Feller. Let (Xi) be a sequence of independent random variables such that

EXi = µi, var(Xi) = σ2i < ∞. Define s2n =
∑n

i=1 σ
2
i and assume limn→∞

1
ns

2
n = σ2. If no

σ2i dominates, and

1

n

n∑
i=1

E(Xi − µi)
2I|Xi−µi|>ϵ

√
n → 0 for every ϵ > 0,

then

n−1/2
∑
i

(Xi − µi) →d N(0, σ2).

Liapounov. Let (Xn,i) be a independent double array such that E|Xn,i|2+δ <∞ for some

δ > 0. If

lim
n→∞

1

s2+δ
n

n∑
i=1

E|Xi − µi|2+δ = 0,

then ∑n
i=1(Xi − µi)

sn
→d N(0, 1).

5.4.2 CLT for Dependent Processes

A time series is m-dependent if (..., Xt−1, Xt) and (Xt+m+1, Xt+m+2, ...) are independent

for all t. For example, moving average processes are m-dependent. And it is clear that

0-dependence is equivalent to independence.



16

CLT for m-Dependence. Let (Xt) be strictly stationary, m-dependent time series with

mean µ and a finite variance. Then we have

1√
T

(
T∑
t=1

(Xt − µ)

)
→d N(0, V ),

where V =
∑m

k=−m γX(k).

CLT for Linear Processes. Define Xt = µ+
∑∞

k=−∞ φkεt−k, where (εt) is strong white

noise with variance σ2. If
∑

k |φk| <∞, then

1√
T

(
T∑
t=1

(Xt − µ)

)
→d N(0, V ),

where V = σ2 (
∑

k φk)
2.

We extend the strong mixing coefficient function α(k) to [0,∞) by setting α(k + h) =

α(k) for h ∈ (0, 1) for all k. The generalized α function is thus a monotone step-function

decreasing from 1/2 to zero at infinity if the underlying process is α-mixing.

We define the inverse function of α(k) as

α−1(u) = inf{x ≥ 0 : α(x) ≤ u} =

∞∑
k=0

Iu<α(k).

CLT for α-mixing Processes. If Xt is a strictly stationary time series with mean zero

such that
∫ 1
0 α

−1(u)F−1
|X0|(1 − u)2du < ∞, then the series V =

∑
k γX(k) converges and

√
TX̄ →d N(0, V ).

We define a martingale difference sequence (MDS) as a time series Xt such that Xt is

Ft-measurable and E(Xt|Ft−1) = 0, where (Ft) is a filtration.
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CLT for MDS Let (Xt) be a martingale difference sequence with respect to the filtration

(Ft). If

1

T

T∑
t=1

E(X2
t |Ft−1) →p V,

1

T

T∑
t=1

E(X2
t · I{|Xt| > ϵ

√
T}|Ft−1) →p 0,

then
√
TX̄ →d N(0, V ).

D. Bosq (1998), Nonparametric statistics for stochastic processes, Springer.


