
Supplementary Material for

“Panel Data Models with Interactive Fixed Effects
and Multiple Structural Breaks”

This supplemental document provides the proofs of all the technical lemmas in Appendix B

of the main document.

C Proofs of the technical lemmas

In this appendix we give the detailed proofs of the technical lemmas used in Appendix B. Before

proving Lemma B.1 on the convergence rates of ̇, we give some preliminary results. Let

b = (01 
0
2  

0
 )
0 where  is a -dimensional column vector and let  be a positive constant

whose value may change from line to line. Recall that  = min(
√

√
 )
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for kbk2 =P
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¯̄ X
=1

0
0
ΛΛ

0
¯̄
≤

X
=1

¯̄
0

0
ΛΛ

0
¯̄
≤ max
1≤≤

°° 0
Λ
°° X
=1

°°°°°°Λ0°°
≤ max

1≤≤
°° 0

Λ
°°³ X

=1

°°°°2´12³ X
=1

°°Λ0°°2´12
1



By the restriction on Λ and Assumption 1(ii), we have
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On the other hand, using 1
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as kbk ≤ ( )12. Then, by (C.1) and (C.4), we can complete the proof of (i).
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On the other hand, as in the proof of (C.4) above we can show
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We then complete the proof of (ii) by using (C.5) and (C.6).
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(C.3), completes the proof of (iii).

(iv) Using Assumption 1(iii) and the fact 1
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which completes the proof of (iv).

We has thus completed the proof of Lemma C.1. ¥
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Lemma C.2 Suppose that Assumption 1 in Appendix A holds and −12+ 12−12 = (1)
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Proof of Lemma C.2. The proof of this lemma is similar to that of Theorem 3.1 in Appendix
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Then, by (C.8) and (C.9) and using the fact thatMΛ0Λ
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By Lemma C.1 above, we can prove that
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Let ḋ = β̇ − β0 and ḋΛ =
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where ⊗ denotes the Kronecker product. It is easy to verify that
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Ȧḋ
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ḋ
0
ΛĊḋ
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ḋ
0
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where Ḋ = Ȧ − Ċ0
Ḃ
+
Ċ and ḋ∗ = ḋΛ − Ḃ+

Ċḋ. By Assumption 1(i), we may show that

the minimum eigenvalue of 1
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Lemma C.3 Suppose that Assumption 1 in Appendix A holds and −12+ 12−12 = (1).
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Proof of Lemma C.3. (i) By (2.7) and (C.9) and letting  = ̇ − 0 , we have
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Noting that Tr () ≤ Tr ()Tr () for conformable positive semidefinite matrices  and
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Noting that Tr () ≤ Tr (0)12 Tr (0)12 for conformable matrices  and  we have
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The analysis of the remaining three terms is similar to the proof of Theorem 1 in Bai and

Ng (2002) by switching the roles of  and . For ̇5, using the fact that Λ
00Λ0 =  (),
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By the assumption that max1≤≤ E
h°°P

=1

P
=1 

0

°°2i = (2 2 +  2) in Assump-

tion 1(iii), we can similarly prove
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By (C.13)—(C.21), we can prove that
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Premultiplying (C.13) by Λ̇
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Furthermore, applying (C.12) in the proof of Lemma C.2 and noting that the matrix Ḃ is

positive definite, we can show that
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which together with Assumption 1(i), implies that 1

Λ̇
0
Λ0 is asymptotically invertible and thus

V̇  is also asymptotically invertible. We can then complete the proof of (i) by using this fact

and (C.22).
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By Assumption 1(i) and (C.14), we can readily prove
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Analogously, by (C.15) and (C.16), we can prove that
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For ̇∗3, by the definition of ̇3, we have
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By the Cauchy-Schwarz inequality and Assumptions 1(ii) and (iii), we have
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Similarly, with the help of Lemma C.3(i), we can also prove that
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By (C.27)—(C.29), we have
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Similarly, we can also show that
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For ̇∗5, by the definition of ̇5, we have
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1


V̇
+


X
=1

¡
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By Assumptions 1(i) and (iii), we have
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Using Lemma C.3(i), we can also prove that
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By (C.32)—(C.34), we have
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Noting that Λ̇
0
Λ0 =  () and using the assumption E
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By (C.24)—(C.26), (C.30), (C.31), (C.35) and (C.36), we can complete the proof of (ii).

(iii) and (iv) The proofs of (iii) and (iv) can be completed by using the results in Lemmas

C.3(i) and (ii).

(v) Note that
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̇7 = Λ0Ḣ
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Using the results in Lemmas C.3(i) and (iv), we can prove (v).

(vi) The proof is analogous to that of part (ii) and thus omitted.

(vii) By Assumption 1(iii) and part (i),

1



X
=1

||(Λ̇−Λ0Ḣ)0||2 =
1


Tr
³
(Λ̇−Λ0Ḣ)0εε0(Λ̇−Λ0Ḣ)

´
≤ 1


kεk2sp ·

1


Tr
¡
(Λ̇−Λ0Ḣ)0(Λ̇−Λ0Ḣ)¢

=  ((1 +−1)(−2 + ̇ ))

We have thus completed the proof of Lemma C.3. ¥

With the above three lemmas, we are ready to give the proof of Lemma B.1.

Proof of Lemma B.1. Let ̂(Λ) be defined as in (C.8), β̇ and Λ̇ be defined in Lemma

C.2, and Ḣ be defined in Lemma C.3. Note that

 −̇ = (
0
 − ̇) + Λ̇Ḣ

+
0 +

¡
Λ0 − Λ̇Ḣ+¢

0 +  (C.38)

The preliminary estimate ̇ which minimizes ̂(Λ) (with respect to ) satisfies that³ 1

 0
M Λ̇

´
(̇ − 0 ) =

1


 0
M Λ̇ +

1


 0
M Λ̇

¡
Λ0 − Λ̇Ḣ+¢

0  (C.39)

asM Λ̇Λ̇ = 0, where 0 is a null matrix or vector whose size may change from line to line.

We first consider the term 1

 0
M Λ̇. Notice that

1


 0
M Λ̇ =

1


 0
MΛ0 +

1


 0


¡
M Λ̇ −MΛ0

¢
 (C.40)

By the definition ofMΛ0 , we have

1


 0
MΛ0 =

1


 0
 −

1


 0
Λ

0(Λ00Λ0)+Λ00 (C.41)

By Assumption 1(iii), we can show that for each 1 ≤  ≤ 

1


k 0

k = 

³
12−12

´
 (C.42)

By Assumptions 1(i)—(iii), we can show that for each 1 ≤  ≤ 

k 0
Λ

0k =  () kΛ00k =  (
12) and

µ
1


Λ00Λ0

¶+
−→ Σ+Λ 

which imply that
1


k 0

Λ
0(Λ00Λ0)+Λ00k = 

³
−12

´
 (C.43)
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Thus, by (C.41)—(C.43), we have

1


k 0

MΛ0k = 

³
12−12

´
 (C.44)

To derive the order of  0


¡
M Λ̇−MΛ0

¢
, we need to investigate the termM Λ̇−MΛ0 . By

(C.37), we have

−(M Λ̇ −MΛ0) = Λ̇
¡
Λ̇
0
Λ̇
¢+
Λ̇
0 −Λ0Ḣ¡Ḣ 0

Λ00Λ0Ḣ
¢+
Ḣ
0
Λ00 =

7X
=1

̇  (C.45)

We next show that

1



°° 0


¡ 7X
=1

̇

¢

°° = 

¡
−1

¢
 (C.46)

To save the space, we only consider the case of  = 5. Other cases can be studied similarly. For

 0
̇5, note that

̇5 = Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+¡
Λ̇−Λ0Ḣ¢0

= Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


¡
Λ̇V̇  −Λ0ḢV̇ 

¢0


= Λ0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


¡ 8X
=1

̇

¢0
 (C.47)

where ̇ ,  = 1  8, are defined in the proof of Lemma C.3(i) above. By the fact that both

Ḣ and V̇  are asymptotically invertible and similar to the proof of Lemma C.3(i), we readily

prove that

1



°°°°°° 0
Λ

0Ḣ
³
Ḣ
0
Λ00Λ0Ḣ

´+
V̇
+


⎛⎝ 5X
=1

̇ + ̇8

⎞⎠0 
°°°°°° = 

³
−2 + −1 ̇

12


´
 (C.48)

Meanwhile, by Assumptions 1(i)(ii) and noting that

max
1≤≤

E
£ X
=1

¯̄
0

¯̄2 ¤
= max
1≤≤

E
£ X
=1

(∗)
2
¤
= (2 + )

by Assumption 1(iv), we can prove that

1



°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+
 ̇

0
6

°°°
=

1



°°°°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


Ã
1



X
=1


0


0
Λ̇

!0


°°°°°°
= 

Ã
1

2

°°°°°
X
=1

Λ̇
0


0


°°°°°
!

11



and

1

2

°°°°°
X
=1

Λ̇
0


0


°°°°° ≤ −12
Ã

1

2

X
=1

°°°Λ̇0

°°°2!12 ·Ã 1



X
=1

°°0°°2
!12

= 

⎛⎝−1

Ã
1



X
=1

kk2
!12⎞⎠ 

which together with Lemma C.2, indicate that

1



°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+
 ̇

0
6

°°° = 

³
−1 ̇

12


´
 (C.49)

Similarly, we can also show that

1



°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+
 ̇

0
7

°°°
=

1



°°°°°° 0
Λ

0Ḣ
¡
Ḣ
0
Λ00Λ0Ḣ

¢+
V̇
+


Ã
1



X
=1


00
 Λ

00Λ̇

!0


°°°°°° =  (1)
1



°°°°°
X
=1

0 
0


°°°°°
=  (

−12)

Ã
1



X
=1

°°0 °°2
!12

·
Ã
1



X
=1

°°0°°2
!12

= 

¡
−1

¢
 (C.50)

Then, by (C.48)—(C.50) and using the fact that ̇ =  (1) in Lemma C.2, we can readily

prove that
1



°° 0
̇5

°° = 

¡
−1

¢
 (C.51)

Then we complete the proof of (C.46), which implies that

1



°° 0


¡
M Λ̇ −MΛ0

¢

°° = 

¡
−1

¢
 (C.52)

We next consider the term 1

 0
M Λ̇

¡
Λ0 − Λ̇Ḣ+¢

0 . Note that

1


 0
M Λ̇

¡
Λ0−Λ̇Ḣ+¢

0 =
1


 0
MΛ0̇

¡
Λ0−Λ̇Ḣ+¢

0 +
1


 0


¡
M Λ̇−MΛ0̇

¢¡
Λ0−Λ̇Ḣ+¢

0 

(C.53)

Applying Lemmas C.3(i) and (v), we can find that 1

 0
MΛ0̇

¡
Λ0 − Λ̇Ḣ+¢

0 is the leading

term, which will be the major focus in the following proof. Note that

Λ0 − Λ̇Ḣ+
=
¡
Λ0ḢV̇  − Λ̇V̇ 

¢
V̇
+
 Ḣ

+


We can apply the decomposition (C.13) for Λ0ḢV̇ −Λ̇V̇   use the fact thatMΛ0̇Λ
0Ḣ =

0 and both Ḣ and V̇  are asymptotically invertible, and then obtain

1


 0
MΛ0̇

¡
Λ0 − Λ̇H+¢

0 = −
1


 0
MΛ0̇

⎛⎝ 3X
=1

̇ +
8X

=6

̇

⎞⎠ V̇ +
 Ḣ

+
0  (C.54)
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Similar to the proof of Lemma C.3(i) and using the decomposition Λ̇ = (Λ̇−Λ0Ḣ)+Λ0Ḣ, we
may prove that

1



°°°°°° 0
MΛ0̇

⎛⎝̇1 + ̇3 +
8X

=6

̇

⎞⎠ V̇ +
 Ḣ

+
0

°°°°°° = 

¡
−1 + ̇

¢
 (C.55)

Meanwhile, letting  = 00
¡
1

F 00F 0

¢+
0 , we may also obtain

− 1

 0
MΛ0̇ ̇2V̇

+
 Ḣ

+
0 =

1

2

X
=1

 0
MΛ0̇

00
 Λ

00Λ̇V̇
+
 Ḣ

+
0

=
1



X
=1

 0
MΛ0̇ (C.56)

Note that
1


 0
M Λ̇(̇ − 0 )

∼ 1


 0
MΛ0̇ (C.57)

where 
∼  denotes  = (1 +  (1)). By (C.39), (C.44), and (C.52)—(C.57), we have°°°°° 1 0
MΛ0̇ − 1



X
=1

 0
MΛ0̇

°°°°° = 

³
12−12 + −12 + ̇

´
 (C.58)

Let L = diag
©
1

 0
1MΛ0̇1 

1

 0
MΛ0̇

ª
and L∗ be the  ×  block matrix

with the ( ) block being 1


 0
MΛ0̇. By (C.58), we may show that¡
L −L∗

¢
ḋ = R  (C.59)

where ḋ is defined in the proof of Lemma C.2, R = (
0
1     

0
 )
0 with

kk = 

³
12−12 + −12 + ̇

´
and

1



X
=1

||k2 = 

¡
−1 + −1 + ̇2

¢


Using the arguments as used in the proofs of Theorem 3.1 and Lemma C.2, we can prove that

L −L∗ is asymptotically positive definite with the smallest eigenvalue bounded away from

zero. Hence, (C.59) indicates that

1


kḋk2 = 1



X
=1

k̇ − 0 k2 = 

¡
−1 + −1 + ̇2

¢
 (C.60)

which, in conjunction with the definition of ̇ in the statement of Lemma C.3, implies that

1

kḋk2 = 

¡
−1 + −1

¢
, and strengthens the consistency result in Lemma C.2. By the fact
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that the matrix 1

 0
MΛ0̇ is positive definite as well as (C.58) and (C.60), we can prove

that °°°̇ − 0

°°° = 

³
12−12 + −12

´
= 

³
−1

´
for each , completing the proof of Lemma B.1 in Appendix B. ¥

Proof of Lemma B.2. (i) Using the argument in the proof of Lemma C.2 (with some mod-

ifications), we may prove that  =  (1). Then, following the proofs of (C.44) and (C.52)

above, we can readily show that

1

2

X
=1

°° 0
M Λ̂

°°2 = 

¡
−1 + −1

¢
 (C.61)

Furthermore, by the Cauchy-Schwarz inequality, we have

1



X
=1

(̂−0 )0 0
M Λ̂ = 

¡
12−1

¢·Ã 1


X
=1

°°°̂ − 0

°°°2!12 = 

³
−1

12


´
 (C.62)

(ii) As Λ00MΛ0 = 0, we have
P

=1 
00
 Λ

00M Λ̂ =
P

=1 
00
 Λ

00¡M Λ̂ −MΛ0
¢
 Similar to

the decomposition in (C.37), we have

P Λ̂ −PΛ0 = Λ̂
¡
Λ̂
0
Λ̂
¢+
Λ̂
0 −Λ0H¡H 0Λ00Λ0H

¢+
H 0Λ00 ≡

7X
=1

  (C.63)

where H ≡ H =
¡
1

F 00F 0

¢¡
1

Λ00Λ̂

¢
V +

  V  is defined in (2.7), and    = 1  7

are analogously defined as ̇ in the proof of Lemma C.3(v) with Λ̇ and Ḣ replaced by Λ̂

and H, respectively. We only need to show that¯̄̄̄
¯
X
=1

00 Λ
00¡M Λ̂ −MΛ0

¢


¯̄̄̄
¯ =

¯̄̄̄
¯̄ X
=1

00 Λ
00¡ 7X

=1



¢


¯̄̄̄
¯̄ = 

³
−2 + −1

12


´
 (C.64)

When (Λ̇ Ḣ) is replaced by (Λ̂H), it is easy to verify that the convergence results in

Lemma C.3 still hold with ̇ replaced by  . By Assumption 1(iii),°°°°°
X
=1

Λ000

°°°°° =  (
√
 ) (C.65)

which together with Lemma C.3 (with some modifications to allow the replacement of ̇  Λ̇

and Ḣ by  , Λ̂ and H, respectively) indicates that

1



°°°°°
X
=1

00 Λ
00 (2 + 4 + 7) 

°°°°° = 

¡
( )−12(−2 + 

12
 )

¢
 (C.66)
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On the other hand, note that°°°°°
X
=1

¡
Λ̂V  −Λ0HV 

¢0


0


°°°°° =
°°°°°°

X
=1

⎛⎝ 8X
=1



⎞⎠0 0
°°°°°°  (C.67)

where  ,  = 1  8, are defined similarly to ̇ in the proof of Lemma C.3 (i) with ̇

and Λ̇ replaced by ̂ and Λ̂, respectively. Let ̂ = ̂ − 0 Then, by the definition of 

and using Assumptions 1(i)—(iii), we can prove that°°°°°
X
=1

01
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
̂̂

0


0


0


°°°°°
= 

¡
−1

¢ · X
=1

k0 k
X
=1

k̂k2k 0
k

= 

³
1212

´
 (C.68)

and °°°°°
X
=1

02
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
Λ00 ̂

0


0


0


°°°°°
=  (

−1)
X
=1

k0 k
X
=1

k̂kk0 kk 0
k

= 

¡
12 ( )

12
¢
 (C.69)

By analogous arguments, we can also show that°°°°°
X
=1

04
0


°°°°° = 

¡
12

12


¢
 (C.70)

On the other hand, using Lemma C.3 we can show that°°°°°
X
=1

03
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
̂

0


0


0


°°°°°
≤ 1



°°°°°
X
=1

X
=1

H 0Λ00̂
0


0


0


°°°°°+ 1



°°°°°
X
=1

X
=1

¡
Λ̂−Λ0H

¢0
̂

0


0


0


°°°°°
≤ kHk

Ã
1



X
=1

||Λ00||2
!12⎛⎝ 1



X
=1

°°°°°̂0
X
=1

 0


0


°°°°°
2
⎞⎠12

+

Ã
1



X
=1

||(Λ̂−Λ0H)0||2
!12⎛⎝ 1



X
=1

°°°°°̂0
X
=1

 0


0


°°°°°
2
⎞⎠12
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= 

³
 ( )

12
´
+

³
(1 +12−12)(−1 + 

12
 ) ( )

12
´

= 

³
(1 +12−12−1 +12−1212 ) ( )

12
´
 (C.71)

and analogously°°°°°
X
=1

05
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0


00
 Λ

000

°°°°°
≤ 1



°°°°°
X
=1

X
=1

H 0Λ00
00
 Λ

000

°°°°°+ 1



°°°°°
X
=1

X
=1

¡
Λ̂−Λ0H

¢0


00
 Λ

000

°°°°°
≤ kHk 1


kΛ00εF 0k2 + 1



°°°°°
X
=1

¡
Λ̂−Λ0H

¢0


00


°°°°°°°Λ00εF 0°°
=  (1) +

³
12 12(−2 + 

12
 )

´
 (C.72)

Using the fact that under Assumptions 1(i) and (iv)

X
=1

°°°°°
X
=1

0
0


°°°°°
2

≤
Ã

X
=1

X
1=1

k01k2
!Ã

X
2=1

k02k2
!
= 

¡
 2( +  )

¢
 (C.73)

we have°°°°°
X
=1

06
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0
̂

0


0


°°°°°
≤ 1


max
1≤≤

kΛ̂0k ·
Ã

X
=1

k̂k2
!12

·
⎛⎝ X

=1

°°°°°
X
=1

0
0


°°°°°
2
⎞⎠12

=  (
−1) ·

³
 12

12


´
·

³
12(12 +  12)

´
= 

³

12
 ( 12 +12 )

´
 (C.74)

Notice that°°°°°
X
=1

08
0


°°°°° =
1



°°°°°
X
=1

X
=1

Λ̂
0


0


0


°°°°°
≤ 1



°°°°°
X
=1

X
=1

H 0Λ00
0


0


°°°°°+ 1



°°°°°
X
=1

X
=1

¡
Λ̂−Λ0H

¢0


0


0


°°°°° 
For the first term on the right hand side, by the Cauchy-Schwarz inequality and Assumption

1(iii) and (C.73) we may show that

1



°°°°°
X
=1

X
=1

H 0Λ00
0


0


°°°°° ≤ 1


kHk ·

Ã
X
=1

kΛ00k2
!12

·
Ã

X
=1

°° X
=1

0
0


°°2!12
= 

¡
( )−12

¢


¡
12(12 +  12)

¢
= 

¡
( )12 + 

¢
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For the second term on the right hand side, by Lemma C.3(vii) (with ̇  Λ̇ and Ḣ replaced

by   Λ̂ and H, respectively), we have

1



°°°°°
X
=1

X
=1

¡
Λ̂−Λ0H

¢0


0


0


°°°°° ≤
Ã
1



X
=1

k¡Λ̂−Λ0H¢0k2!12 ·Ã 1



X
=1

°° X
=1

0
0


°°2!12
= 

³
(1 +12−12)(−1 + 

12
 )

´


³
 +12 12

´
= 

³
( +)(−1 + 

12
 )

´


It follows that °°°°°
X
=1

08
0


°°°°° = 

³
( )12 +  +

12


´
 (C.75)

Finally, noting that
¯̄P

=1

P
=1 

00
 

0


0


¯̄
=  ( ) by Assumption 1(iv), we can also show

that °°°°°
X
=1

07
0


°°°°° =  () (C.76)

By (C.67)—(C.76), we have

1



°°°°°
X
=1

¡
Λ̂V  −Λ0HV 

¢0


0


°°°°° = 

³
−2 + −1 

12


´
 (C.77)

With this, we readily prove that

1



°°°°°
X
=1

00 Λ
00(1 + 3 + 5 + 6)

°°°°° = 

³
−2 + −1

12


´
 (C.78)

which together with (C.66), leads to (C.64). Hence, we complete the proof of (ii).

(iii) This follows from Lemmas C.1(iii) and (iv). ¥

Before proving Lemma B.3 in Appendix B, we need to introduce two technical lemmas.

The first lemma is similar to Lemma C.3 with the preliminary estimates replaced by the post-

LASSO estimates. Let Λ̃0 = Λ̃(T 0
0) be the infeasible estimate of the factor loadings in the

post-LASSO estimation procedure, H̃ =
¡
1

F 00F 0

¢¡
1

Λ00 Λ̃0

¢
Ṽ
+
 with Ṽ  defined in the

proof of Theorem 3.4 in Appendix B, and ̃ =
1
0

P0+1
=1 k̃0 −0k2, where ̃0 is the

-th -dimensional element of the infeasible estimate α̃0 = α̃0(T 0
0).

Lemma C.4 Suppose that the conditions in Theorem 3.4 hold. Then we have

(i) 1


°°Λ̃0 −Λ0H̃
°°2 = 

¡
−2 + ̃

¢
,
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(ii) 1


¡
Λ̃0 −Λ0H̃¢0Λ0H̃ = 

¡
−2 + ̃

12


¢
,

(iii) 1


¡
Λ̃0 −Λ0H̃¢0Λ̃0 = 

¡
−2 + ̃

12


¢
,

(iv) 1


¡
Λ̃
0
0Λ̃0 − H̃ 0

Λ00Λ0H̃
¢
= 

¡
−2 + ̃

12


¢
,

(v)
°°P Λ̃0

−PΛ0̃

°° = 

¡
−1 + ̃

12


¢
,

(vi) 1


P
=1(Λ̃0 −Λ0H̃)00 = 

¡
−2 + ̃

12


¢
with  = 1 or 

0
  and

(vii) 1


P
=1 ||(Λ̃0 −Λ0H̃)0||2 = 

¡
(1 +−1)(−2 + ̃ )

¢


Proof of Lemma C.4. The proof is analogous to that of Lemma C.3. Hence, we only sketch

it. For notational simplicity, we let Ṽ ≡ Ṽ  , and ̃ = ̃0 −0 ,  = 1 
0+1. By (B.25)

in the proof of Theorem 3.4, we have

Λ̃0Ṽ −Λ0H̃Ṽ

=

⎡⎢⎣ 1



0+1X
=1

0 −1X
=0−1

¡
 −̃0

¢¡
 −̃0

¢0⎤⎥⎦ Λ̃0 −Λ0H̃Ṽ

=

⎡⎢⎣ 1



0+1X
=1

0 −1X
=0−1

¡−̃ +Λ
00 + 

¢¡−̃ +Λ
00 + 

¢0⎤⎥⎦ Λ̃0 −Λ0H̃Ṽ

=
1



0+1X
=1

 0 −1X
= 0−1

̃ ̃
0


0
Λ̃0 − 1



0+1X
=1

 0 −1X
= 0−1

̃
00
 Λ

00Λ̃0 − 1



0+1X
=1

 0 −1X
= 0−1

̃
0
Λ̃0

− 1



0+1X
=1

 0 −1X
= 0−1

Λ00 ̃
0


0
Λ̃0 +

1



X
=1

Λ00 
0
Λ̃0 − 1



0+1X
=1

0 −1X
=0−1

̃
0


0
Λ̃0

+
1



X
=1


00
 Λ

00Λ̃0 +
1



X
=1


0
Λ̃0

≡
8X

=1

̃  (C.79)

Then following the proof of Lemma C.3 with Λ̇ and  replaced by Λ̃0 and ̃ , respectively,

and using Assumption 3(ii), we can readily prove Lemma C.4(i). Note that

1



¡
Λ̃0 −Λ0H̃¢0Λ0H̃ =

1



8X
=1

Ṽ
+
̃0Λ

0H̃ ≡ 1



8X
=1

̃∗  (C.80)

Then following the proof of Lemma C.3(ii) and using Lemma C.4(i), we readily prove Lemma

C.4(ii). The results in (iii) and (iv) can be proved by combining Lemmas C.4(i) and (ii). Similar
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to (C.37), we have the following decomposition:

P Λ̃0
−PΛ0̃ = Λ̃0

¡
Λ̃
0
0Λ̃0

¢+
Λ̃
0
0 −Λ0H̃

¡
H̃
0
Λ00Λ0H̃

¢+
H̃
0
Λ00 ≡

7X
=1

̃  (C.81)

where

̃1 =
¡
Λ̃0 −Λ0H̃¢¡H̃ 0

Λ00Λ0H̃
¢+¡
Λ̃0 −Λ0H̃¢0

̃2 =
¡
Λ̃0 −Λ0H̃¢¡H̃ 0

Λ00Λ0H̃
¢+
H̃
0
Λ00

̃3 =
¡
Λ̃0 −Λ0H̃¢£¡Λ̃00Λ̃0

¢+ − ¡H̃ 0
Λ00Λ0H̃

¢+¤¡
Λ̃0 −Λ0H̃¢0

̃4 =
¡
Λ̃0 −Λ0H̃¢£¡Λ̃00Λ̃0

¢+ − ¡H̃ 0
Λ00Λ0H̃

¢+¤
H̃
0
Λ00

̃5 = Λ0H̃
¡
H̃
0
Λ00Λ0H̃

¢+¡
Λ̃0 −Λ0H̃¢0

̃6 = Λ0H̃
£¡
Λ̃
0
0Λ̃0

¢+ − ¡H̃ 0
Λ00Λ0H̃

¢+¤¡
Λ̃0 −Λ0H̃¢0

̃7 = Λ0H̃
£¡
Λ̃
0
0Λ̃0

¢+ − ¡H̃ 0
Λ00Λ0H̃

¢+¤
H̃
0
Λ00

By (C.81) and Lemmas C.4(i) and (iv), we can prove (v). The proofs of (vi) and (vii) parallel

to those of Lemmas C.3(vi) and (vii). We have thus completed the proof of Lemma C.4. ¥

Lemma C.5 Suppose that the conditions in Theorem 3.4 hold. Then we have

(i) ̃ =
1
0

P0+1
=1 k̃0 − 0k2 = 

¡
−2

¢
,

(ii) 1


¡
Λ̃0−Λ0H̃¢0 = H̃ 0 ¡ 1


F 00F 0

¢+ ³ 1


P
=1 

0
 
0


´
+

¡
−1 (

0)−12kα̃0 −α0k¢
+

³
−3

´
for  = 1   ,

(iii) 1
( )

°°°°P 0 −1
= 0−1

 0
Λ

0H̃
³
H̃
0
Λ00Λ0H̃

´+ ³
Λ̃0 −Λ0H̃

´0
 −

P 0 −1
=0−1

 0
Λ

0
¡
Λ00Λ0

¢+
¡
1

F 00F 0

¢+ ³ 1


P
=1 

0
 
0


´°°° = 

¡
−1 (

0)−12
°°α̃0 −α0

°°¢+

³
−3

´
for  = 1,...,0

+1,

(iv) 1


P
=1

°°°(Λ̃0 −Λ0H̃)00
°°° = 

³
−2

´
.

Proof of Lemma C.5. As the proof of the convergence rates for α̃0 in (i) is similar to the

proof of Lemma B.1, we omit the details. Furthermore, the results in (iii) and (iv) can be easily

proved by using (ii). Hence we only focus on the proof of the result in (ii).

Note that for any  = 1   ,

1



¡
Λ̃0 −Λ0H̃¢0 = 1


Ṽ
+¡
Λ̃0Ṽ −Λ0H̃Ṽ ¢0 = 1


Ṽ
+¡ 8X

=1

̃

¢0
 (C.82)
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by using (C.79) in the proof of Lemma C.4. By Lemma C.5(i), Assumptions 1(ii), (iii) and 3(ii),

and the Jensen inequality, we have

1



°°°Ṽ +
̃01

°°° =
1

2

°°°°°°°Ṽ
+
0+1X
=1

 0−1X
= 0−1

Λ̃
0
0̃̃

0


0


°°°°°°°
= 

¡
−2−1

¢ °°°Λ̃0

°°° max
1≤≤

12max(
0
) ·

0+1X
=1

k̃k2
 0−1X
= 0−1

°° 0

°°

= 

³
12−12̃

´
= 

³
−3

´
 (C.83)

By Lemmas C.4(i) and C.5(i) and Assumptions 1(iii), (iv) and 3(ii), we can show that

1



°°Ṽ +
̃03

°°
=

1

2

°°°°°°°Ṽ
+

⎡⎢⎣0+1X
=1

 0−1X
= 0−1

H̃
0
Λ00̃0

0
 +

0+1X
=1

 0−1X
= 0−1

¡
Λ̃0 −Λ0H̃¢0̃0 0



⎤⎥⎦
°°°°°°°

= 

¡
−2−1

¢⎡⎢⎣0+1X
=1

k̃k
 0−1X
= 0−1

kΛ00k
°° 0


°°+ kΛ̃0 −Λ0H̃k

0+1X
=1

k̃k
0−1X
= 0−1

kk
°° 0


°°
⎤⎥⎦

= 

³
−1(̃ )

12
´
+

³
−12(−1 + ̃

12
 )(̃ )

12
´

= 

³
−1(̃ )

12 + −3

´
 (C.84)

By Assumptions 1(i), (iii) and 3(ii), and Lemma C.5(i), we have

1


Ṽ
+
̃04 =

1

2
Ṽ
+

⎛⎜⎝0+1X
=1

 0−1X
=0−1

Λ̃
0
0̃

00
 Λ

00

⎞⎟⎠ 

= 

¡
−2−1

¢ · 0+1X
=1

k̃k

⎛⎜⎝  0−1X
= 0−1

kΛ̃00kk0 k
°° X
=1

0 
°°
⎞⎟⎠

= 

³
−1 (

0)−12kα̃0 −α0k
´
 (C.85)

Analogously, we can show that

1


Ṽ
+
̃02 = 

³
−1 (

0)−12kα̃0 −α0k
´
 (C.86)
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By Assumptions 1(iii) and (iv), we can prove that

1


Ṽ
+
̃05 =

1

2
Ṽ
+

Ã
X
=1

Λ00 
0
Λ̃0

!0


=
1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
Λ

00 +
1

2
Ṽ
+

Ã
X
=1

H̃
0
Λ0000 Λ

00

!

=
1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
Λ

00 +

Ã
1

2

°° X
=1

Λ000
°°°°Λ00°°!

=
1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
Λ

00 +

¡
−3

¢
 (C.87)

By Assumptions 1(ii), (iv) and Lemma C.5(i), we have

1


Ṽ
+
̃06 =

1

2
Ṽ
+

⎛⎜⎝0+1X
=1

 0−1X
= 0−1

Λ̃
0
0̃

0


⎞⎟⎠ 

= 

¡
−2−1

¢ · 0+1X
=1

k̃k

⎡⎢⎣  0−1X
= 0−1

kΛ̃00k
°°°°°

X
=1



°°°°°
⎤⎥⎦

= 

³
−1 (

0)−12kα̃0 −α0k
´

(C.88)

By the definition of H̃ and noting that Ṽ
+
 is diagonal, we have

1


Ṽ
+
̃07 =

µ
1


Ṽ
+
Λ̃
0
0Λ0

¶"
1



X
=1

0 
0


#
= H̃

0
µ
1


F 00F 0

¶+ " 1



X
=1

0 
0


#


(C.89)

By the definition of ̃8 and Assumption 3(iii),

1


Ṽ
+
̃08 =

1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
 +

1

2
Ṽ
+
H̃
0

X
=1

Λ000

=
1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
 +

¡
−3

¢
 (C.90)

Combining the results in (C.82)—(C.90) yields

1



¡
Λ̃0 −Λ0H̃¢0 = H̃

0
µ
1


F 00F 0

¶+ 1



X
=1

0 
0
 +

1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
Λ

00

+
1

2
Ṽ
+

X
=1

³
Λ̃0 −Λ0H̃

´0


0
 +

³
−3

´
+

³
−1 (

0)−12kα̃0 −α0k
´
 (C.91)
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By Assumptions 1(i) and (iv), the first term on the right hand side of (C.91) is  (
−2
 ); by As-

sumptions 1(iii) and Lemmas C.4(vi) and C.5(i) we can show the second term is  (
−1
 

−1
 );

by Assumptions 1(iii) and (iv) and Lemma C.4(vii) and , we can show the third and fourth

terms are  (
−1
 

−1
 ) It follows that

1



³
Λ̃0 −Λ0H̃

´0
 = 

³
−1 

−1


´
 (C.92)

By (C.92) and following the above arguments, we can further show that the second and third

terms on the right hand side of (C.91) are  (
−3
 ) This completes the proof of Lemma C.5(ii).

¥

Proof of Lemma B.3. For notional simplicity, we let Λ̃ = Λ̃0 throughout this proof.

(i) Noting that

−(M Λ̃ −MΛ0) = Λ̃
¡
Λ̃
0
Λ̃
¢+
Λ̃
0 −Λ0H̃¡H̃ 0

Λ00Λ0H̃
¢+
H̃
0
Λ00 =

7X
=1

̃ (C.93)

and by using the decomposition (C.81), we have

1

 ( )

0 −1X
=0−1

 0


¡
M Λ̃ −MΛ0

¢
 = − 1

 ( )

0 −1X
=0−1

 0


Ã
7X

=1

̃

!
 (C.94)

By (C.94), Lemmas C.4(i), (iv) and C.5(iii), we can prove that for any  = 1 0 + 1,°°°°°°°
1

 ( )

 0 −1X
= 0−1

 0


¡
M Λ̃ −MΛ0

¢
 +(2 1)

°°°°°°°
≤

°°°°°°°
1

 ( )

 0 −1X
= 0−1

 0


¡ 7X
=16=5

̃

¢


°°°°°°°+
°°°°°°°

1

 ( )

0 −1X
=0−1

 0
̃5 −(2 1)

°°°°°°°
=

°°°°°°°
1

 ( )

 0 −1X
= 0−1

 0
̃5 −(2 1)

°°°°°°°+

³
−1 (

0)−12kα̃0 −α0k+ −3

´
= 

³
−1 (

0)−12kα̃0 −α0k+ −3

´
(C.95)

which completes the proof of Lemma B.3(i).

(ii) Noting that for any  = 1 0 + 1,

1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢

0 =
1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

¡
Λ0H̃Ṽ − Λ̃Ṽ ¢Ṽ +

H̃
+
0 
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and Ṽ
+
H̃
+
=
¡
1

Λ00Λ̃

¢+¡ 1

F 00F 0

¢+
 by the decomposition (C.79), we have

1

 ( )

0 −1X
=0−1

 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢

0

= − 1

 ( )

 0 −1X
= 0−1

 0
M Λ̃

Ã
8X
=1

̃

!µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0  (C.96)

We next analyze each term on the right hand side of the equation (C.96).

For  = 1, by the definition of ̃1, Assumptions 1(i)(ii), and Lemma C.5(i), we have

1

 ( )

°°°°°°°
 0 −1X
=0−1

 0
M Λ̃̃1

µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
=

1

 ( )

°°°°°°°
 0 −1X
=0−1

 0
M Λ̃

⎛⎜⎝ 1



0+1X
=1

0−1X
= 0−1

̃̃
0


0
Λ̃

⎞⎟⎠µ 1

Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
= 

⎛⎜⎝ 1

2

0+1X
=1

k̃k2 ·
1

 ( )

 0 −1X
= 0−1

 0−1X
=0−1

°° 0
M Λ̃

°°°° 0
Λ̃
°°°°0 °°

⎞⎟⎠
=  (̃ ) = 

³
−1 (

0)−12kα̃0 −α0k
´
 (C.97)

For  = 2, by the definition of ̃2, we have

1

 ( )

0 −1X
=0−1

 0
M Λ̃̃2

µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

= − 1

 ( )

0+1X
=1

 0 −1X
= 0−1

 0−1X
=0−1

 0
M Λ̃̃

00


µ
1


F 00F 0

¶+
0

= −
0+1X
=1

⎛⎜⎝ 1

 ( )

0 −1X
=0−1

 0−1X
= 0−1


0
M Λ̃

⎞⎟⎠ ̃

= −
h
Φ̃∗1(Λ̃)  Φ̃

∗
0+1(Λ̃)

i ¡
α̃0 −α0¢  (C.98)

where  = 00
¡
1

F 00F 0

¢+
0 and Φ̃

∗
(Λ̃) =

1
( )

P 0 −1
=0−1

P 0−1
= 0−1


0
M Λ̃ By Lem-

mas C.4(v) and C.5(i), we may show that°°Φ̃∗(Λ̃)−Φ∗°° = 

³
−1 (

0)−1
´
 1 ≤   ≤ 0 + 1 (C.99)
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where Φ∗ =
1

( )

P 0 −1
=0−1

P 0−1
= 0−1


0
MΛ0. Hence, by (C.98), (C.99) and the Cauchy-

Schwarz inequality, we have°°°°°°°
1

 ( )

 0 −1X
= 0−1

 0
M Λ̃̃2

µ
1


Λ00Λ̃0

¶+µ 1

F 00F 0

¶+
0 +

¡
Φ∗1 Φ

∗
0+1

¢
(α̃0 −α0)

°°°°°°°
=

°°°hΦ̃∗1(Λ̃)  Φ̃∗0+1(Λ̃)
i ¡
α̃0 −α0¢− ³Φ∗1 Φ∗0+1

´ ¡
α̃0 −α0¢°°°

= 

³
−1 (

0)−12kα̃0 −α0k
´
 (C.100)

For  = 3, by the definition of ̃3, Assumptions 1 and 3(ii), as well as (C.92), we have

1

 ( )

°°°°°°°
 0 −1X
= 0−1

 0
M Λ̃̃3

µ
1


Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
=

1

 ( )

°°°°°°°
 0 −1X
= 0−1

 0
M Λ̃

⎛⎜⎝ 1



0+1X
=1

 0−1X
=0−1

̃
0
Λ̃

⎞⎟⎠µ 1

Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
=

 (1)

2 ( )

0+1X
=1

k̃k

⎡⎢⎣ 0 −1X
=0−1

 0−1X
= 0−1

°° 0
M Λ̃

°°³°°0Λ0°°+ °°0(Λ̃−Λ0H̃)°°´°°0 °°
⎤⎥⎦

= 

³
−1 (

0)−12kα̃0 −α0k
´
 (C.101)

To study the next two terms, we can apply the arguments used in the proof of Lemma C.3(ii)

and show that 1

|| 0



¡
Λ0 − Λ̃H̃+¢|| =  (

12−2 + ̃
12
 ) This, in conjunction with Lemma

C.4(iii), implies that

1



°° 0
M Λ̃(Λ

0 − Λ̃H̃+
)
°° = 

³
12−2 + ̃

12


´
(C.102)

and similarly for  = 1 · · · 0 + 1,

1

 ( )

 0 −1X
= 0−1

°° 0
M Λ̃(Λ

0 − Λ̃H̃+
)
°°°°0 °° = 

³
12−2 + ̃

12


´
 (C.103)
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For  = 4, by the definition of ̃4 (C.103), and Lemma C.5(i) and noting thatM Λ̃Λ̃ = 0,

1
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⎞⎟⎠µ 1

Λ00Λ̃

¶+µ 1

F 00F 0

¶+
0

°°°°°°°
= 

⎛⎜⎝ 1

2 ( )

0+1X
=1

k̃k
 0 −1X
= 0−1

 0−1X
= 0−1

°° 0
M Λ̃

¡
Λ0 − Λ̃H̃+¢°°°° 0

Λ̃
°°°°0 °°°°0 °°

⎞⎟⎠
= 

³
−1 (

0)−12kα̃0 −α0k
´
 (C.104)

For  = 5, by the definition of ̃5, Assumptions 1(i)(iii), (C.103), and Lemma C.5(iv), we

have
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For  = 6, by the definition of ̃6 and Assumptions 1(i)-(iii), 2(ii) and 3(ii), we have
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For  = 7, by the definitions of ̃7 and , we have
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=
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X
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0
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X
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=
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∗
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X
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¡
M Λ̃ −MΛ0

¢
 (C.107)

where ∗ =
1


P
=1 . On the other hand, following the proof of Lemma B.3(i) and (C.95) in

particular, we may show that

°°°° 1
( )

P0 −1
= 0−1

P
=1 

0


¡
M Λ̃ −MΛ0

¢
 +(2 2)

°°°° =
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³
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0)−12kα̃0 −α0k+ −3

´
 It follows that°°°°°°°

1
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Λ00Λ̃
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F 00F 0
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∗
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´
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For  = 8, by the definition of ̃8, we have

1
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µ
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=
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µ
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By (C.96), (C.97), (C.100), (C.101), (C.104)—(C.106), (C.108) and (C.109), we can complete the

proof of Lemma B.3(ii).

We have thus completed the proof of Lemma B.3. ¥

Let Λ̇ = (̇1  ̇)
0 and Λ̆ =

1


P
=1(−̇)(−̇)

0Λ̇ = (̆1  ̆)
0

In order to prove Lemma B.4 in Appendix B, we first need to prove the following technical lemma.

Lemma C.6 Suppose that Assumptions 1 and 2 in Appendix A hold and   0. Define the

0 × matrix Ḣ ≡
¡
1

F 00F 0

¢ ³
1

Λ00Λ̇

´
with the Moore-Penrose generalized inverse Ḣ

+
 ="

Ḣ
+
 (1)

Ḣ
+
 (2)

#
, where Ḣ

+
(1) and Ḣ

+
(2) are 0 × 0 and (−0) × 0 matrices, respectively.

Let V̇  denote an  ×  diagonal matrix consisting of the  largest eigenvalues of the

 ×  matrix 1


P
=1( − ̇)( − ̇)

0 where the eigenvalues are in decreasing

order along the main diagonal line. Write Λ̇ =
h
Λ̇(1) Λ̇(2)

i
and Ḣ =

h
Ḣ(1) Ḣ(2)

i


where Λ̇(1) Λ̇(2) Ḣ(1) and Ḣ(2) are  × 0  × (−0)  0 × 0 and 0 ×
(−0) matrices, respectively. Furthermore, write V̇  = diag

n
V̇ (1) V̇ (2)

o


where V̇ (1) denotes the upper-left 0 ×0 submatrix of V̇  Then we have

(i) 1


°°°Λ̆ −Λ0Ḣ

°°°2 = 

³
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´
,

(ii) 1


°°°Λ̆0Λ̆ − Ḣ 0
Λ
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°°° = 

³
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´
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(iii) 1


°°°Λ̇ (1)−Λ0Ḣ(1)V̇
+
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³
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´
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,
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³
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´


Proof of Lemma C.6. (i) When   0 we can follow the proof of Lemma C.2 and show

that ̇ ≡ 1


P
=1 k̇ − 0 k2 =  (1) Next, using  −̇ = Λ

00 +  +(
0
 − ̇)

and ̇ = ̇ − 0  we have

Λ̆ −Λ0Ḣ =
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̇  (C.110)

Following the proof of Lemma C.3(i), we can readily show that 1

||̇ ||2 = 

¡
−2 + ̇

¢


Then we readily have 1

||Λ̆ −Λ0Ḣ||2 = 

¡
−2 + ̇

¢
. With this, we can apply the argu-

ments used in the proof of Theorem 3.1 to show that ̇ = 

³
−2

´
 Then we may complete

the proof of (i).

(ii) Noting that

1


Λ̆0Λ̆ − 1


Ḣ
0
Λ

00Λ0Ḣ

=
1


(Λ̆ −Λ0Ḣ)

0(Λ̆ −Λ0Ḣ) +
1


(Λ̆ −Λ0Ḣ)

0Λ0Ḣ +
1


Ḣ
0
Λ

00(Λ̆ −Λ0Ḣ)

the convergence result (ii) follows from the triangle and Cauchy-Schwarz inequalities, Lemma

C.6(i), and the fact that ||Λ0Ḣ||2 =  () 

(iii) Let V̇  and V̇  (1) denote the probability limits of V̇  and V̇  (1)  respectively,

as ( ) → ∞. Recall that Ḣ =
1


F 00F 0Λ00Λ̇ and

1

Λ̇0Λ̇ = I As the application of
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PCA method, we have the identity
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X
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( −̇)( −̇)
0Λ̇ = Λ̇V̇ 

Pre-multiplying both sides of the above equation by Λ̇0 and using the normalization 1
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Following the proof of Lemma C.3, it is easy to show that kk = 
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´
by proving

that    = 1 2  8 are either  (
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 ) or of smaller order. For example,
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Then
1

2
Λ̇0Λ

0F 00F 0Λ00Λ̇ = V̇  − 
→ V̇  (C.111)

Observe that 1
2
Λ̇0Λ

0F 00F 0Λ00Λ̇ has rank 0 at most in both finite and large samples.

Let ∆ () =
1

Λ00Λ̇ () for  = 1 2 and Σ̂ =

1

F 00F 0 Then
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0
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∆0
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0
 (2) Σ̂∆ (2)

#


Note that Σ̂ = Σ +  (1) by Assumption 1(i). Following the proof of Lemma A.3(ii) in Bai

(2003), we can show that plim( )→∞∆0
 (1) Σ̂∆ (1) = V̇ (1) which has full rank 0

This ensures that 1
2
Λ̇0Λ

0F 00F 0Λ00Λ̇ has rank0 in large samples and∆
0
 (2) Σ̂∆ (2)

→
0 Then∆0

 (1) Σ̂∆ (2)
→ 0 by the Cauchy-Schwarz inequality. By the asymptotic nonsin-

gularity of Σ̂  this also implies that ∆ (2) =  (1) and ∆ (1)
→∆ (1) for some 0 ×0

nonsingular matrix ∆ (1)  Consequently, we have

Ḣ (1) =
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F 00F 0Λ00Λ̇ (1)
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and

Ḣ (2) =
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Then Ḣ (1) is asymptotically nonsingular and Ḣ has rank 0

By the definition Λ̆ =
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because 1
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notes the (0 + 1)-th largest eigenvalue of the square matrix in the parentheses. In view of the
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We have thus completed the proof of Lemma C.6. ¥

Proof of Lemma B.4. (i) The proof is similar to that of Lemma C.2. Notice that
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By Lemma C.1(i) (with 0 and Λ being replaced by  and Λ), we can prove that
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Ȧ =
1


diag( 0

1M Λ̇
1 

0
M Λ̇

 ) and Ċ =
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ḋ
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ΛĊḋ

¯̄̄
≤
h
ḋ
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12−1 ) ≤ 0 Using
a decomposition similar to (B.8) in Appendix B, we can readily show that max(Ċ

0
Ċ )

=  (1). By Assumption 1(ii), min(Ȧ)   w.p.a.1. and ||ḋΛ|| =  (1)  It follows that
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Note that  ( β̇) = minΛ
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0
Λ = I Let  (β) =
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=1 ( −) ( −)
0  ]. For any   0 we make the following decomposition:
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(β) +
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(β) ≡ 1 (β) + 2 (β) 

Noting that 1(β̇) ≥ 1(β̇0
) =  (0 β̇0

) we have

 ( β̇)−  (0 β̇0
) =

h
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)
i
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Let 0 = 
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Under Assumptions 1-2 and using the fact that 1

kḋk2 =  (1) we can readily show that

the second and third terms in the last expression are  (1) The first term is  (( )−12) by

Assumption 1(iii). It follows that

2(β̇) ≥
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≥ (0 −)min(F
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= (0 −)min(Σ )min(ΣΛ) +  (1) 

where the second inequality follows from Weyl’s inequality. In sum, we have

plim inf
( )→∞

 ( β̇)−  (0 β̇0
) ≥   = (0 −)min(Σ )min(ΣΛ)2

completing the proof of Lemma B.4(i).

(ii) Recall that  ( β̇) = minΛ
̂ (βΛ) subject to Λ

0
Λ = I. Noting that

 ( β̇) = ̂ (β̇ Λ̇) by the triangle inequality, we have¯̄̄
 ( β̇)−  (0 β̇0
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¯̄̄

≤
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It suffices to show that ̂ (β̇ Λ̇) − ̂ (β0Λ0) = 

³
−2

´
for each  ∈ [0 max]

Let Ḣ
+
 denote the Moore-Penrose generalized inverse of Ḣ such that ḢḢ

+
 = I0 ; see, for
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example, the proof of Lemma C.6(iv). Noting that −
0
 = Λ

00 +  andMΛ0Λ
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may show that
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We next prove Lemma B.4(ii) by only showing that 1 − ̂ (β
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 ) 2 =
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Using the arguments as in the proof of Lemmas C.1(iii)(iv), we can show that
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For 12 we have
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Using the decomposition in (C.110) and Lemma C.6(i), we can readily show that 112 =
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. By the Cauchy-Schwarz inequality, the fact that P Λ̇
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Lemma C.1(iii),

|12| ≤
"
1



X
=1

°°°(Λ̆ −Λ0Ḣ)Ḣ
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where the following result which can be proved by Lemma C.6 has also been used:
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Thus we have 12 = 

³
−2

´
 Similarly, using the fact that M Λ̇

is a projection matrix

and by (C.112), 13 ≤ 1


P
=1

°°°(Λ̆ −Λ0Ḣ)Ḣ
+


0


°°°2 = 

³
−2

´
 As a consequence, we

may complete the proof of 1 − ̂ (β
0Λ0) =  (

−2
 ) for each  ∈ [0 max].

Next, by Assumption 1(ii) and the fact that M Λ̇
is a projection matrix and that ̇ =

1


P
=1 ||̇ −0 ||2 = 

³
−2

´
 we have

2 ≤ 1



X
=1

°°°(̇ − 0 )
0 0

M Λ̇
(̇ − 0 )

°°° ≤ max
1≤≤

max
¡
 0


¢
̇ = 

³
−2

´


To study 3 we apply ̆ =  − (Λ̆ −Λ0Ḣ)Ḣ
+


0
 andM Λ̇

= I −P Λ̇
and make the

following decomposition:

3 =
1



X
=1

̆0M Λ̇
(̇ − 0 )

=
1



X
=1

0(̇ − 0 )−
1



X
=1

0P Λ̇
(̇ − 0 )

− 1



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0M Λ̇
(̇ − 0 )

≡ 31 − 32 − 33
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By the Cauchy-Schwarz inequality, Assumptions 1(ii)-(iii), the fact that

̇ =
1



X
=1

°°°̇ − 0

°°°2 = 

³
−2

´


1



X
=1

0P Λ̇
 = 

¡
−2

¢
 max(M Λ̇

) = 1

and Lemma C.6(i), we have

|31| ≤
"
1

2

X
=1

0
0


#12
̇
12
 =  (

12−12) (
−1
 ) = 

³
−2

´


|32| ≤
"
1



X
=1

0P Λ̇


#12 "
1



X
=1

(̇ − 0 )
0 0

(̇ − 0 )

#12
≤ 

¡
−1

¢
max

¡
 0


¢12
̇
12
 = 

³
−2

´


and

|33| ≤
"
1



X
=1

00 Ḣ
+0
 (Λ̆ −Λ0Ḣ)

0M Λ̇
(Λ̆ −Λ0Ḣ)Ḣ

+


0


#12

×
"
1



X
=1

(̇ − 0 )
0 0

(̇ − 0 )

#12

≤ 1

12

°°°Λ̆ −Λ0Ḣ

°°°°°°Ḣ+


°°°" 1


X
=1

°°0 °°2
#12

12max
¡
 0


¢
̇
12


=  (
−1
 ) (1) (

−1
 ) = 

³
−2

´


Hence 3 = 

³
−2

´
 In sum, we have shown that ̂ (β̇ Λ̇)−̂ (β0Λ0) = 

³
−2

´
for each  ∈ [0 max] completing the proof of Lemma B.4(ii). ¥

Proof of Lemma B.5. Let

 (αΛ;T) = 1



+1X
=1

−1X
=−1

£
( −)

0MΛ ( −)− 0
¤

and ̄2 =
1



P
=1 

0
. Note that³
α̃(T) Λ̃(T)

´
= arg min

(Λ)
 (αΛ; T) 

and

̃2(T)− ̃2(T 00) =
£
̃2(T)− ̄2

¤− £̃2(T 00)− ̄2

¤
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with ̃2(T)− ̄2 =  (α̃(T) Λ̃(T); T). We prove the lemma by showing that (i)

0

∆2

£
̃2(T 00)− ̄2

¤
=  (1) ; (C.113)

and (ii)

0

∆2

(̃2(T)− ̄2 ) ≥ +  (1) wpa1 for some   0 (C.114)

We first show (C.113) in (i). We make the following decomposition:

̃2T 0
0

=
1



0+1X
=1

 0 −1X
= 0−1

[ −̃ ]
0M Λ̃ [ −̃ ]

=
1



0+1X
=1

 0 −1X
= 0−1

£
(

0
 − ̃) +Λ

00 + 
¤0
M Λ̃

£
(

0
 − ̃) +Λ

00 + 
¤

=
1



0+1X
=1

 0 −1X
= 0−1

£
0M Λ̃ + 00 Λ

00M Λ̃Λ
00 + (

0
 − ̃)

0 0
M Λ̃(

0
 − ̃)

+ 20M Λ̃(
0
 − ̃) + 2

0
M Λ̃Λ

00 + 2
00
 Λ

00M Λ̃(
0
 − ̃)

¤
≡ 1 + 2 + 3 + 24 + 25 + 26 

where we suppress the dependence of ̃ = ̃(T 00) and Λ̃ = Λ̃(T 0
0) on T 00 for notational

simplicity. By Lemma C.1(iii),

1 =
1



X
=1

0M Λ̃ =
1



X
=1

0 +

¡
−2

¢
= ̄2 +

¡
−2

¢


Using the preliminary results in Lemmas C.4 and C.5(i) and Theorem 3.4, we may show that

 =  (
−2
 ) for  = 3 4 6 UsingMΛ0Λ

0 = 0 and (C.79), and decomposingM Λ̃−MΛ0 =

−(P Λ̃ −PΛ0) as in (C.81), we can readily show that

2 =
1



X
=1

00 Λ
00 ¡M Λ̃ −MΛ0

¢
Λ00 = 

³
−2

´
 and

5 =
1



X
=1

0
¡
M Λ̃ −MΛ0

¢
Λ00 = 

³
−2

´


It follows that

̃2(T 00)− ̄2 = 

³
−2

´
 (C.115)

which, together with Assumption 2(ii), leads to (C.113).
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We now show (C.114) in (ii). We consider three cases: (a) 0 = 1 (b) 0 = 2 and (c)

3  0 ≤ max For case (a) of 
0 = 1, if   0, we have  = 0 and T = T0 = ∅ The true

model contains one structural break:

 =

(


0
1 +Λ

00 +  if 1 ≤  ≤  01 − 1


0
2 +Λ

00 +  if  01 ≤  ≤  ;

while the working model that ignores the structural break in the regression coefficient is

 = +Λ
00 +  1 ≤  ≤ 

where  is the error term. Note that ̃
2(T0) = 1



P
=1 ( −̃)

0M Λ̃ ( −̃)  where

(̃ Λ̃) = argmin
Λ

1



X
=1

( −)
0MΛ ( −)

subject to Λ0Λ = I0 , and we suppress the dependence of ̃ and Λ̃ on T0 Using − =

(
0
 − ) +Λ00 +  and Lemmas C.1(i)(ii), we can readily show that

1



X
=1

( −)
0MΛ ( −)

=
1



X
=1

£
(

0
 − ) +Λ00 + 

¤0
MΛ

£
(

0
 − ) +Λ00 + 

¤
=

1



X
=1

£
(

0
 − ) +Λ00

¤0
MΛ

£
(

0
 − ) +Λ00

¤
+

1



X
=1

0 + (
12−1 )

uniformly in  and Λ such that Λ0Λ = I0 and kk ≤ 12 It follows that

̃2(T0) =
1



X
=1

̃ 0M Λ̃̃ + ̄2 + (
12−1 )

≥ min
Λ: Λ0Λ=0

1



X
=1

̃ 0MΛ̃ + ̄2 + (
12−1 )

=
1



X
=0+1



"
X
=1

̃̃
0


#
+ ̄2 + (

12−1 )

≥ 1



X
=0+1



"
X
=1

(
0
 − ̃)(0 − ̃)0 0



#
+ ̄2 + (

12−1 )

=
1


min

Λ: Λ0Λ=0

"
X
=1

(0 − ̃)0 0
MΛ(

0
 − ̃)

#
+ ̄2 + (

12−1 )

≥  · 1


X
=1

°°0 − ̃
°°2 + ̄2 + (

12−1 )
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where ̃ = (
0
 − ̃) +Λ00  the second and third inequalities follow from Weyl’s inequality

and Assumption 1(ii), respectively. Consequently, we have by Assumptions 5(i)-(ii)

0

∆2

£
̃2(T0)− ̄2

¤ ≥  +  (1) 

where  is defined in Assumption 5(i). We have completed the proof of (C.114) for case (a).

In cases (b)-(c), it suffices to consider the case where  = 0 − 1 (If   0 − 1 one can
always augment the set T by 0 − 1− true break points which are not inside T to make

 (α̃(T) Λ̃ (T) ; T) smaller). For the case (b) with  = 1 we consider three subcases:

(b.1) 2 ≤ 1 ≤  01  (b.2) 
0
1  1 ≤  02  and (b.3) 

0
2  1 ≤  In the subcase (b.1), [1 1 − 1]

does not contain a break point while [1  ] contains two true break points 
0
1 and  02  Observe

that

 (α̃1(T1) Λ̃(T1); T1) =
1



1−1X
=1

n
[ −̃1(T1)]0M Λ̃(T1)[ −̃1(T1)]− 0

o
+
1



X
=1

n
[ −̃2(T1)]0M Λ̃(T1)[ −̃2(T1)]− 0

o
≡ 1 +2

Noting that the interval [1 1 − 1] does not contain a break point, using the arguments as used
in the study of case (a), we can readily show that

1 ≥ 



1−1X
=1

°°01 − ̃1(T1)
°°2 + (

12−1 )

Similarly, we can show that

2 ≥ 



X
=1

°°0 − ̃2(T1)
°°2 + (

12−1 )

Then by Assumptions 5(i)(ii)

0

∆2

 (α̃1(T1) Λ̃(T1); T1)

≥ 0

∆2

⎧⎨⎩



1−1X
=1

°°01 − ̃1(T1)
°°2 + 



X
=1

°°0 − ̃2(T1)
°°2 + (

12−1 )

⎫⎬⎭
≥  min

12

0

∆2

2X
=1

−1X
=−1

°°0 − 
°°2 +  (1)

≥  +  (1) .
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In the subcase (b.2), both [2 1 − 1] and [1  ] contain a break. As in subcase (b.1), we
can show that

0

∆2

 (α̃1(T1) Λ̃(T1); T1)

≥ 0

∆2

⎧⎨⎩



1−1X
=1

°°0 − ̃1(T1)
°°2 + 



X
=1

°°0 − ̃2(T1)
°°2 + (

−12 + 12−12)

⎫⎬⎭
≥  min

12

0

∆2

2X
=1

−1X
=−1

°°0 − 
°°2 ≥  +  (1) 

The proof for the subcase (b.3) is analogous to that for the subcase (b.1). Hence, the conclusion

(C.114) follows in the subcase (b). Case (c) can be studied analogously. This completes the

proof of the lemma. ¥

Proof of Lemma B.6. For T ∈ T̄ with 0   ≤ max, we recall that

̃2(T) =  (α̃(T) Λ̃ (T) ; T)

= min
Λ

1



+1X
=1

−1X
=−1

( −)
0MΛ ( −)

= min


1



+1X
=1

−1X
=−1

( −)
0M Λ̃(T) ( −) 

and ̄2 =
1



P
=1 

0
 In view of the fact that

̃2(T 00) ≥ ̃2(T) and ̃2(T 00) = ̄2 + (
−2
 )

by (C.115), we have

0 ≤ ̃2(T 00)− ̃2(T) = ̄2 − ̃2(T) + (
−2
 ) =

+1X
=1

 + (
−2
 ) (C.116)

where  ≡ − inf  ()   () = 1


P−1
=−1

h
( −)

0M Λ̃(T) ( −)− 0
i
and

[−1  − 1] does not contain any break point for  = 1  + 1 Let 0 = 0−1 and

̃ = ̃(T) = argmin  () =
³P−1

=−1 
0
M Λ̃(T)

´−1P−1
=−1 

0
 M Λ̃(T) for  =

1  + 1 As in the proofs of Lemma C.4(i) and Theorems 3.1 and 3.4, we can show that

1

||Λ̃ (T) − Λ0||2 =  (

−2
 ) and ||̃ − 0|| =  (

−1
 ) Then using  − ̃ =
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 +Λ
00 +(

0
 − ̃) we have

 (̃) =
1



−1X
=−1

h
( −̃)

0M Λ̃(T) ( −̃)− 0
i

=
1



−1X
=−1

n£
 +Λ

00 +(
0
 − ̃)

¤0
M Λ̃(T)

£
 +Λ

00 +(
0
 − ̃)

¤− 0
o

=
−1


−1X
=−1

0P Λ̃(T) +
1



−1X
=−1

00 Λ
00M Λ̃(T)Λ

00

+
1



−1X
=−1

¡
0 − ̃

¢0
 0
M Λ̃(T)

¡
0 − ̃

¢
+

2



−1X
=−1

0M Λ̃(T)Λ
00

+
2



−1X
=−1

0M Λ̃(T)

¡
0 − ̃

¢
+

2



−1X
=−1

00 Λ
00M Λ̃(T)

¡
0 − ̃

¢
≡ 1 + 2 + 3 + 24 + 25 + 26

By Lemma C.1(iii),
+1X
=1

1 =
−1


X
=1

0P Λ̃(T) = 

¡
−2

¢


In addition, we can show that

+1X
=1

2 =
1



X
=1

00 Λ
00(M Λ̃(T) −MΛ0)Λ

00 = 

³
−2

´


+1X
=1

3 ≤ 1



+1X
=1

°°0 − ̃
°°2 −1X

=−1

max
¡
 0


¢
= 

³
−2

´


and similarly
P+1

=1  = 

³
−2

´
for  = 4 5 6 Then by (C.116), ̃2(T) − ̄2 =



³
−2

´
for all  ∈ ©0 + 1 max

ª
and T = {1  } which completes the proof

of Lemma B.6. ¥
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