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Abstract

We propose a monotonicity property for methods of estimating multiple structural

breaks in linear regressions. A procedure with such a property yields a sequence of

monotonically increasing sets of estimated break dates. Due to the uncertainty about

the true number of breaks in finite samples, a monotone procedure offers a ranking

of breaks from the least uncertain to the most. Most existing methods for estimating

structural breaks do not enjoy monotonicity. We propose a new method that imposes

monotonicity. Monte Carlo simulations show that the proposed procedure works well

in finite samples. We also apply the procedure to a study of the structural changes in

the Fed’s monetary policy.
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1 Introduction

In applied studies involving time series regressions, researchers often segment the whole sample

into several periods or regimes. Regressions with constant coefficients are then estimated in each

of these regimes. In many cases, the dates of structural changes that separate adjacent regimes are

treated as known. They may be major reforms, crises, or other extraordinary events. However,

these events may not mark regime changes in data-generating processes (DGP) accurately. A break

in DGP may happen long before the occurrence of major events due to the effect of expectation.
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It may also happen long after the major events (e.g., reforms) due to delays in implementation or

manifestation of effects. Worse still, there may be structural breaks in the DGP that the researcher

is unaware of.

Inaccurate or missing break dates can lead to incorrect segmentation and mistaken inferences.

For applied researchers, it may thus be prudent to take an agnostic view on break dates and treat

them as unknown. Not only are the break dates unknown, but the number of break dates is also

unknown. Consequently, we may recast the problem of estimating multiple structural breaks into

that of determining a sequence of sets of break dates. The sequence would be indexed by the

number of breaks, m = 1, 2, . . . , m̄, where m̄ is a predetermined upper bound of m. For each m,

there would be a set of m break dates. Listing all of the sets in the sequence may reveal rich

information about the time-varying nature of a model applied to real-world data.

And it would be desirable for the sequence to be monotonically increasing. This would allow

estimated break dates to be ranked from the least uncertain to the most. We call methods that

produce a monotonically increasing sequence of estimated break-date sets monotone estimation.

Table 1 provides an example in which a sequence of three sets of estimated break dates (in columns)

satisfies monotonicity. If there are breaks in the DGP, 1979Q3 would be the least uncertain among

all candidates.

Table 1: Estimated Break Dates

m (# of breaks) 1 2 3

1979Q3 1979Q3 1975Q1

2001Q4 1979Q3

2001Q4

The literature on estimating multiple structural breaks is well developed. Bai and Perron

(1998) propose to estimate multiple structural breaks by least squares (LS). And Bai and Perron

(2003) provide an efficient algorithm to calculate multiple breaks that globally minimizes the sum of

squared residuals. Applying the idea of Lasso (Tibshirani, 1996), various authors (e.g., Bleakley and

Vert (2011), Angelosante and Giannakis (2012)) propose to estimate multiple breaks in regressions

by penalized least squares (PLS) with group-fused-Lasso (GFL) penalty. Qian and Su (2016)

provide asymptotic theories of the resulting estimators of the break dates and regression coefficients.

However, most existing methods for estimating structural changes do not satisfy monotonicity.

In this paper, we propose a new procedure that achieves monotonicity by adaptively penalizing
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GFL. Monte Carlo simulations show that the cost of imposing monotonicity, in terms of the error

in estimating the break dates when the number of breaks is known, is minimal.

The rest of the paper proceeds as follows. Section 2 defines the monotonicity property. Section

3 describes our new method. Section 4 presents Monte Carlo simulation results. Section 5 conducts

an empirical study of the US monetary policy rule. Section 6 concludes.

2 Monotonicity of Structural-Break Estimation

Consider the following time series regression,

yt = x′tβt + ut, t = 1, ..., T, (1)

where xt is a vector of covariates, βt is the corresponding vector of time-varying coefficients, and

ut is the error process. We assume that βt is piecewise constant, containing m breaks (m + 1

regimes), with m being a small integer compared to T . Specifically, let Tj denote break dates for

j = 1, . . . ,m. We assume that βt = αj for t = Tj−1, . . . , Tj−1 and j = 1, . . . ,m+1. By convention,

we have T0 = 1 and Tm+1 = T + 1.

Define θ1 ≡ β1 and θt = βt − βt−1 for t > 1. The set of structural breaks can be defined as

T = {t > 1|θt ̸= 0}. Let θ̂t be the estimator for θt. The estimated set of structural breaks is thus

T̂m = {t > 1|θ̂t ̸= 0}. We make the dependence of T̂ on m explicit. Note that m is generally

unknown to applied researchers. Bai and Perron (1998) propose to determine m by testing the null

hypothesis of m breaks against the alternative of m − 1 breaks. Qian and Su (2016) propose an

information criterion to determine m. In this study, our objective is not to determine m. Instead,

we estimate an m-indexed sequence of sets, each of which contains m possible break dates. And we

define a desirable property applicable to both sequences of sets and procedures that yield sequences

satisfying this property:

Definition: Monotonicity. Suppose that an estimation procedure yields a sequence of sets, T̂m

for m = 1, . . . , m̄. If T̂m ⊂ T̂n whenever m < n, then we say that the estimation procedure enjoys

monotonicity.

In other words, a monotone procedure guarantees a monotonically increasing set of estimated

break dates. Some remarks are due regarding the monotonicity (or lack of) of existing approaches

to the estimation of structural breaks. Let SSR ({T1, . . . , Tm}) =
∑m+1

j=1

∑Tj−1
t=Tj−1

(yt − x′tαj)
2. For
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brevity, when minimizing SSR, we focus on selecting {Tj} without mentioning {αj}, which are

chosen jointly with {Tj}.

Remark 1: Sequential LS. The following procedure, which is based on minimizing least

squares, is monotone.

(1) Choose T
(1)
1 that minimizes SSR

(
{T (1)

1 }
)
;

(2) Given T
(1)
1 , insert T

(2)
2 that minimizes SSR

(
{T (1)

1 , T
(2)
2 }

)
;

(3) Repeat till we obtain T
(m̄)
m̄ .

The sequence of estimated sets of break dates is thus

m = 1 : T̂1 ≡ {T (1)
1 }

m = 2 : T̂2 ≡ {T (1)
1 , T

(2)
2 }

...
...

m = m̄ : T̂m̄ ≡ {T (1)
1 , . . . , T

(m̄)
m̄ }.

Remark 2: Global LS. The Global LS procedure described in Bai and Perron (1998) is not

monotone:

(1) For m = 1, choose T
(1)
1 that minimizes SSR

(
{T (1)

1 }
)
;

(2) For m = 2, choose T
(2)
1 and T

(2)
2 that minimize SSR

(
{T (2)

1 , T
(2)
2 }

)
;

(3) Repeat till m reaches m̄.

The sequence of estimated sets of break dates is thus

m = 1 : T̂1 ≡ {T (1)
1 }

m = 2 : T̂2 ≡ {T (2)
1 , T

(2)
2 }

...
...

m = m̄ : T̂m̄ ≡ {T (m̄)
1 , . . . , T

(m̄)
m̄ }.

Note that T
(1)
1 is generally different from the elements in T̂2.
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Remark 3: Penalized LS with Group Fused Lasso (PLS-GFL). PLS-GFL studied in Qian

and Su (2016) does not guarantee monotonicity. PLS-GFL estimates break dates by minimizing

1

T

T∑
t=1

(yt − β′
txt)

2 + λ
T∑
t=2

∥βt − βt−1∥, (2)

or

1

T

T∑
t=1

(
yt − x′t

t∑
s=1

θs

)2

+ λ

T∑
t=2

∥θt∥, (3)

where ∥ · ∥ is the Euclidean norm and λ > 0 is a tuning parameter for the GFL penalty. It is well

known that there exists a λ∗ > 0 such that if λ > λ∗, then θ̂t = 0 for all t ≥ 2, which corresponds to

the case of no break. If for some λ < λ∗, ∥θ̂T1∥ ≠ 0, then there is a break at T1. Further decreasing

λ would produce more breaks. The estimation procedure is as follows:

(1) Start from a λ(0) > λ∗, which ensures no break;

(2) Search for a smaller tuning parameter λ(1) < λ(0), such that λ(1) produces one break at T
(1)
1 ;

(3) Search for a even smaller tuning parameters λ(2) < λ(1) such that λ(2) produces two breaks

at T
(2)
1 and T

(2)
2 ;

(4) Repeat till we have m̄ breaks at T
(m̄)
1 , . . . , T

(m̄)
m̄ .

The sequence of estimated sets of break dates is thus

m = 1 : T̂1 ≡ {T (1)
1 }

m = 2 : T̂2 ≡ {T (2)
1 , T

(2)
2 }

...
...

m = m̄ : T̂m̄ ≡ {T (m̄)
1 , . . . , T

(m̄)
m̄ }.

Theoretically, PLS-GLS should be monotone since, if the procedure produces a strictly positive

∥θ̂Tj∥, the declining tuning parameter in subsequent rounds tends to preserve the positiveness of

∥θ̂Tj∥. Hence, the preservation of the break date Tj in all subsequent rounds. In practice, however,

there are two problems. First, the practical implementation of the minimization of (3), using either

the block coordinate descent algorithm or a general-purpose convex programming package such as

CVX, employs a stopping criterion that is economic in terms of computation cost but may fail to

ensure monotonicity. Second, PLS-GFL tends to produce more than one break around the true
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break date. To get rid of spurious breaks, Harchaoui and Lévy Leduc (2010) propose an algorithm

called rDP, which essentially applies a dynamic-programming algorithm similar to Bai and Perron

(2003) to the estimated break dates in the first stage. As an alternative, we may filter out spurious

breaks by computing:

f(t) =
T∑

j=2

K

(
j − t

h

)
∥θ̂j∥, t = 2, . . . , T,

where K(·) is a kernel function and h is bandwidth. Intuitively, if there are positive ∥θ̂j∥ clustering

around t, then the curve of f(·) would exhibit a peak around t. The location of the peak is then a

likely suspect for a break date. By retaining only the peaks, we may filter out the spurious breaks

surrounding the true one. The bandwidth h regulates the degree to which the filtering is performed.

A higher h achieves a higher degree of filtering. In practice, the ad hoc choice of h = 1 works well,

and the results are not sensitive to the choice of h. Since this post-processing algorithm is based

on kernel smoothing and finding peaks, we call it ksPeak.

Both rDP and ksPeak, however, lead to more incidences of non-monotone estimation. In the

following, we present a new method that is based on PLS-GFL and, at the same time, guarantees

monotonicity.

3 PLS-AGFL

We may estimate break dates by solving the following:

min
{θt}

1

T

T∑
t=1

(
yt − x′t

T∑
s=1

θs

)2

+ λ
T∑
t=2

wt∥θt∥, (4)

where wt is a weighting process. Note that if we let wt = 1 for all t, then the above problem

reduces to (3). Suppose we aim to find up to m̄ breaks. Our procedure starts with setting wt = 1

for all t ≥ 2 and finding a λ(0) > λ∗ that produces no structural changes. Going forward, we then

find a smaller tuning parameter λ(1) < λ(0) that produces exactly one break, say, at T
(1)
1 (that is,

∥θ̂
T

(1)
1

∥ ≠ 0). Now set w
T

(1)
1

= 0 and find a tuning parameter λ(2) that produces exactly two breaks.

One of the two breaks must occur at T
(1)
1 since the penalty on ∥θ

T
(1)
1

∥ is zero. We then repeat the

process till we find m̄ breaks. The algorithm is summarized as follows:

(1) Start from setting wt = 1 for all t and λ(0) > λ∗, which ensures no breaks;

(2) Search for a smaller tuning parameter λ(1) < λ(0), such that λ(1) produces one break at T
(1)
1 .
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Set w
T

(1)
1

= 0;

(3) Search for a tuning parameters λ(2) that produces two breaks at T
(1)
1 and T

(2)
2 . Set w

T
(1)
1

=

w
T

(2)
2

= 0;

(4) Repeat till we have m̄ breaks at T
(1)
1 , T

(2)
2 , . . . , T

(m̄)
m̄ .

Since the weighting process depends on estimated results in the previous round, we call this proce-

dure “PLS with adaptive GFL” or, simply, PLS-AGFL. For any m ≤ m̄, the estimated set of breaks

is given by T̂m ≡ {T (1)
1 , T

(2)
2 , . . . , T

(m)
m }. As m increases, the set T̂m is monotonically increasing.

Since the number of breaks is fundamentally unknown in most studies, we may interpret that the

break at T
(1)
1 is the least uncertain, T

(2)
2 is the second least uncertain, and so on. Thus PLS-AGFL

offers a method to rank structural breaks in terms of certainty facing econometricians.

4 Monte Carlo Simulation

We conduct Monte Carlo experiments to compare the finite-sample performance of PLS-AGFL with

Sequential LS, Global LS, PLS-GFL, and PLS-GFL with two methods of post-filtering (rDP and

ksPeak), when the number of breaks is known. Among these procedures, only the first two enjoy

monotonicity. The purpose of the simulations is to show that the PLS-AGFL obtains monotonicity

without incurring much cost in terms of finite-sample performance. We generate data from yt =

βt + βtxt + ut, where βt = α1I{0 < t ≤ T/4} + α2I{T/4 < t ≤ T/2} + α3I{T/2 < t ≤ 3T/4} +

α4I{3T/4 < t ≤ T} with I{·} being an indicator function. The coefficients α1, . . . , α4 are selected

from the fixed set of {0.25, 0.5, 0.75, 1}. There are three breaks with different jump sizes. The

absolute value of the biggest jump is 0.75 and that of the second biggest jump is 0.5. We experiment

with five data-generating processes (DGP) for xt and ut:

(1) xt ∼ i.i.d. N(0, 1), ut ∼ i.i.d. N(0, σ2
u).

(2) xt = 0.5xt−1 + et, et ∼ i.i.d.N(0, 0.75), ut ∼ i.i.d. N(0, σ2
u).

(3) xt same as in (2), ut = σuvt, vt = 0.5vt−1 + ϵt, ϵt ∼ i.i.d. N(0, 0.75).

(4) xt same as in (2), ut = σuvt with vt = ϵt + 0.5ϵt−1 and ϵt ∼ i.i.d. N(0, 0.8).

(5) xt same as in (2), ut = σu
√
htϵt, ht = 0.05 + 0.05u2t−1 + 0.9ht−1, ϵt ∼ i.i.d. N(0, 1).

7



DGP (1) is the benchmark case where both xt and ut are i.i.d. Gaussian. DGP (2) and (3) introduce

AR(1) dynamics to xt and ut. DGP (4) considers an AR(1) regressor and an MA(1) error. DGP

(5) considers GARCH(1,1) error with an AR(1) regressor. The specifications ensure that both x

and v have unit variances. σu regulates the noise level. The number of repetitions is 1000.

Table 2 reports HD/T , the average Hausdorff distance between the estimated and true sets

of break dates standardized by the sample size. Not surprisingly, when the noise level is low

(σu = 0.25), the Global LS has the best performance. PLS-AGFL attains the second-highest

performance, notably outperforming Sequential LS, which also enjoys monotonicity. Note that

GFL without post-processing performs poorly. Between the two GFL methods with postprocessing,

ksPeak performs substantially better. At elevated noise levels (σu = 1), PLS-AGFL demonstrates

superior performance, outperforming both GFL with post-processing and Global LS. This somewhat

surprising result may be understood by noting that PLS-AGFL successively utilizes information

obtained in the previous round.

In summary, we may conclude that PLS-AGFL, with monotonicity imposed, does not incur

much cost in terms of finite-sample performance. On the contrary, the adaptive nature of our

approach—enabled by treating multiple-break estimation as a sequence of break-date set estima-

tions—could offer advantages, particularly in high-noise environments.

5 Structural Breaks in Monetary Policy Rule

As an illustration of the proposed method, we estimate the following empirical monetary policy

rule of the US federal funds rate:

rt − πt = β0t + β1tπt + β2tyt + ut, (5)

where the subscript t represents quarter, rt denotes the effective federal funds rate, πt the core

PCE inflation rate, yt the GDP gap. The regression equation is adapted from Taylor (1993), where

β0t, β1t, β2t were assumed constants. In fact, (5) reduces to the original Taylor rule if we set β0t = 1,

β1t = β2t = 0.5. Here we allow the coefficients to have structural breaks, reflecting shifts in the

policymaking of the US Federal Reserve. We use quarterly data from FRED covering 1960Q1 to

2024Q4.

Table 3 shows the estimated sets of break dates from m = 1 to 5. Part of the table is already

shown in the Introduction as an illustration. For each m, we also calculate an information criterion
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Table 2: Average error of break-date estimation (HD/T )

LS PLS
DGP σu Sequential Global AGFL GFL rDP ksPeak

T=60
(1) 0.25 0.0385 0.0278 0.0303 0.1605 0.0858 0.0629
(2) 0.25 0.0559 0.0373 0.0464 0.1976 0.1217 0.0962
(3) 0.25 0.0641 0.0452 0.0571 0.2067 0.1355 0.1054
(4) 0.25 0.0641 0.0439 0.0534 0.2055 0.1321 0.1078
(5) 0.25 0.0540 0.0371 0.0449 0.2002 0.1284 0.0962
(1) 1 0.2836 0.2702 0.1496 0.2498 0.2201 0.2079
(2) 1 0.2873 0.2704 0.1603 0.2540 0.2205 0.2092
(3) 1 0.2587 0.2441 0.1758 0.2701 0.2264 0.2081
(4) 1 0.2731 0.2671 0.1802 0.2601 0.2251 0.2117
(5) 1 0.2967 0.2859 0.1671 0.2671 0.2283 0.2151

T=120
(1) 0.25 0.0185 0.0139 0.0150 0.1456 0.0712 0.0460
(2) 0.25 0.0244 0.0160 0.0198 0.1751 0.1025 0.0777
(3) 0.25 0.0340 0.0217 0.0269 0.1917 0.1305 0.1048
(4) 0.25 0.0311 0.0201 0.0257 0.1884 0.1131 0.0914
(5) 0.25 0.0246 0.0160 0.0209 0.1750 0.1039 0.0806
(1) 1 0.2352 0.2057 0.1052 0.2500 0.2232 0.2110
(2) 1 0.2412 0.2118 0.1149 0.2565 0.2316 0.2195
(3) 1 0.2611 0.2510 0.1560 0.2769 0.2382 0.2238
(4) 1 0.2595 0.2327 0.1440 0.2711 0.2387 0.2291
(5) 1 0.2559 0.2256 0.1219 0.2571 0.2267 0.2158

(IC) defined in Qian and Su (2016). For comparison, we also calculate IC for the case of m = 0. It is

clear that the results satisfy monotonicity. The least uncertain break, according to our procedure,

happens in the third quarter of 1979. Note that Paul Volcker, the celebrated chairman of the

Federal Reserve, took office in the second quarter of 1979. He was widely credited with ending

the Great Inflation of the US in the 1970s and early 1980s. And according to our procedure, the

second least uncertain break happens in the fourth quarter of 2001. This may be related to the

pivot, under the leadership of Alan Greenspan, to easy monetary policy following the burst of the

Dot-Com Bubble, the 9.11 attack, and various corporate scandals that undermined the economy

and the financial market. We omit the discussion of other break dates for brevity. Indeed, if we

choose a model using IC (Qian and Su, 2016), the minimal IC points to the case of two breaks

(m = 2).

Table 4 shows the regression results in each regime when we choose m = 2. For comparison,

we also show results for the case of m = 0, where no break exists and all coefficients are constant.
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Table 3: Estimated Break Dates in the US Fed Interest Rate Policy

m (# of breaks) 0 1 2 3 4 5

1979Q3 1979Q3 1975Q1 1975Q1 1975Q1
2001Q4 1979Q3 1979Q3 1979Q3

2001Q4 1981Q1 1981Q1
2001Q4 1985Q1

2001Q4

IC 1.8265 1.7941 1.1852 1.2817 1.3508 1.3467

We make the following observations. First, if all coefficients were constant, the Taylor rule gives a

poor fit to the data. When we allow coefficients to have two breaks at 1979Q3 and 2001Q4, the

goodness of fit (R2) within each one of the three regimes improves substantially. The substantially

lower IC value for m = 2 compared to m = 0 reassures us that the benefit of improving the fit

outweighs the cost of the increasing complexity of the model. Second, it is evident that the policy

shifts at 1979Q3 and 2001Q4 are mainly about the response to inflation. The response to the GDP

gap changes marginally, but the response to inflation experiences changes of sign. Finally, the rate

hikes by Jerome Powell since early 2022, although a drastic series of actions, do not appear to

constitute a shift in the philosophy of policymaking.

Table 4: Regression Results in Each Regime

Regime intercept πt yt R2

m = 2
1960Q1-1979Q2 1.8671∗∗∗ −0.1547∗∗ 0.4458∗∗∗ 0.4443

(0.3309) (0.0698) (0.0680)
1979Q3-2001Q3 1.9003∗∗∗ 0.5341∗∗∗ 0.3324∗∗∗ 0.3242

(0.3084) (0.0771) (0.0860)
2001Q4-2024Q4 2.3471∗∗∗ −1.0212∗∗∗ 0.6637∗∗∗ 0.4483

(0.4346) (0.1695) (0.0889)

m = 0
1960Q1-2024Q4 0.7004∗∗∗ 0.3109∗∗∗ 0.3688∗∗∗ 0.1635

(0.2601) (0.0675) (0.0645)

Notes: *** p<0.01, ** p<0.05, * p<0.1

6 Conclusion

Treating multiple-break estimation as a sequence of break-date set estimations, we propose a mono-

tonicity property for break-date estimation. We propose an adaptive procedure that imposes mono-

tonicity. This procedure would be particularly valuable when the number of breaks is highly un-
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certain and a ranking of break dates in terms of certainty is needed.
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