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Preface

This book is derived from my lecture notes for an advanced course on asset pric-
ing theory. The purpose is to provide a concise and accessible introduction to
no-arbitrage asset pricing for students who have taken undergraduate courses in
calculus, probability and statistics, and linear algebra.

The readers may include advanced undergraduate and graduate students in
finance, economics, and applied mathematics, as well as researchers and practitioners
in the field of quantitative finance.

The book is concise, making it ideal for students and practitioners who are
looking for a quick introduction to the topic. I often sacrifice rigor to make the
book easier to read and understand. However, I have taken care to include all key
steps in the proofs and derivations to ensure that readers can follow along.

I hope that this book will serve as a helpful guide to the fundamentals of no-
arbitrage asset pricing and will help readers appreciate the beauty of mathematical
finance.

Shanghai, China, Junhui Qian
April 2024 junhuiq@gmail.com
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Chapter 1

Introduction

The theory of asset pricing is concerned with explaining and determining prices of
financial assets in a uncertain world.

The asset prices we discuss would include prices of stocks, bonds, exchange
rates, and derivatives of all these underlying financial assets. Asset pricing is crucial
for the allocation of financial resources. Mispricing of financial assets would lead to
inefficiency in investment and consumption in the real economy.

The “uncertainty” in this book is, rather simplistically, described by proba-
bility distributions. A more sophisticated treatment would differentiate uncertainty
from risk as in Knight (1921). Here we treat uncertainty and risk as the same thing:
future variation that can be characterized by some distribution without ambiguity.
In this book, uncertainty is assumed in both how an asset would pay in the future
and how agents would discount the payoff.

In this book we also take the simplistic view that the uncertainty is given and
that it is not influenced by the evolution of prices. It is generally believed in the
investment community, however, that prices may affect future payoffs. For example,
a surge in stock price would lower financing cost for the company and boost future
earnings. We do not go into this direction.

In this first chapter, we study no-arbitrage pricing in a two-period world. Key
concepts such as state prices, risk-neutral probability, and stochastic discount factor,
are introduced.

Classical asset pricing models, such as CAPM and APT (Arbitrage Pricing
Theory), are discussed as special cases of modern asset pricing theory using stochas-
tic discount factor. A classical derivation of CAPM is offered in the Appendix.
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1.1 No-Arbitrage Pricing in Finite States

We first introduce some basic concepts of asset pricing in a two-period finite-state
world.

Commodity A commodity is a “good” at a particular time and a particular place
when a particular “state” happens. For a commodity to be interesting to economists,
it must cost something. Besides physical characteristics, the key characteristic of a
commodity is its availability in space and time, and conditionality. A cup of water in
the desert and another one in Shanghai, although physically the same, are different
commodities. And an umbrella when it rains is also different from that when it
does not. It is in the sense of conditionality that we call a commodity a “contingent
claim”. For example, forwards and futures on oil, ores, gold, and other metals can
be understood as commodities.

Security Security is financial commodity. Stocks, bonds, and their derivatives
are all securities. The payoffs of physical goods are physical goods. The payoffs
of securities are mostly money, sometimes other securities. A financial market is a
market where securities are exchanged.

Consider a two-period world. We live at time t, the next period is t+ 1. The
essential characteristics of a security in this world include the price pt and the future
payoff xt+1. At time t, pt is observed and xt+1 are a random variable.

For examples, we understand

• stock: xt+1 = pt+1 + dt+1, where dt+1 denotes dividend payment.

• bond (zero-coupon, riskless): xt+1 = 1.

• forwards/futures (on a stock with strike price K, long position):

xt+1 = pt+1 −K.

• option (European, on a stock with strike price K)

long call: xt+1 = max{0, pt+1 −K}

long put: xt+1 = max{0, K − pt+1}.

For now, we assume xt+1 is a discrete finite-state random variable, taking
value in RS. In other words, there are S possible values for xt+1, (x1, x2, · · · , xS)′,
corresponding to states s = 1, 2, · · · , S and probability π = (π1, π2, · · · , πS)′. We
assume πs > 0 for all s.
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Portfolio Suppose there are J securities in the market, with prices described by
a vector p = (p1, p2, . . . , pJ)′, where pj is the price of security j. Individuals may
build portfolios of these securities. Mathematically, a portfolio is characterized by
a J-dimensional vector h ∈ RJ . The total price of a portfolio h is thus p′h.

We use a matrix to describe payoffs of all securities at time t+ 1:

X =


x′1
x′2
...
x′J

 =


x1

1 x2
1 · · · xS1

x1
2 x2

2 · · · xS2
...
x1
J x2

J · · · xSJ

 .

Note that rows correspond to securities and columns correspond to states. The
payoff of a portfolio h at time t+ 1 is thus, X ′h.

Complete market If rank(X) = S, the financial market is complete, meaning
that every payoff vector in RS can be realized by trading these J securities. More
formally, for all x ∈ RS, there exists h ∈ RJ such that x = X ′h.

Asset span For any financial market, the asset span is the space spanned by
columns of X ′:

M = {X ′h, h ∈ RJ} = span(X ′).

If M = RS, the market is complete.

The Law of One Price The law of one price (LOP) states that portfolios with
the same payoff must have the same price:

X ′h = X ′h̃ ⇒ p′h = p′h̃,

where p ∈ RJ is the price vector.

Theorem A necessary and sufficient condition for LOP is: zero payoff has zero
price.

Proof : (1) If LOP holds, X ′(h− h̃) = 0 ⇒ p′(h− h̃) = 0. (2) If LOP does not
hold, then X ′h = X ′h̃ but p′h 6= p′h̃, this is, there exists a h∗ such that X ′h∗ = 0
but p′h∗ 6= 0.
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Theorem For any z ∈ M, there is a linear pricing functional1 q(z) if and only if
LOP holds.

Proof (1) Linear functional⇒ LOP holds. If LOP does not hold, then q(0) = ε 6= 0,
then q(z + 0) = q(z) + ε, contradicting the definition of linear functional. (2) LOP
holds ⇒ linearity. For any z, z̃ ∈ M, we can find h and h̃ such that z = X ′h,
z̃ = X ′h̃. So αz + βz̃ = αX ′h+ βX ′h̃. So

q(αz + βz̃) = αp′h+ βp′h̃ = αq(z) + βq(z̃).

No Arbitrage For a vector x = (x1, . . . , xn)′, we define

x ≥ 0 if xi ≥ 0 for all i,

x > 0 if xi ≥ 0 for all i and xi > 0 for some i,

Arbitrage An arbitrage is a portfolio h that satisfies X ′h ≥ 0 and p′h < 0. An
arbitrage portfolio generates nonnegative payoff but has a negative price. If there
are arbitrage opportunities, the market is obviously not stable or efficient. The
no-arbitrage assumption is thus a weak form of equilibrium or efficiency.

Theorem The payoff functional is linear and positive if and only if there is no
arbitrage.

Proof (1) linear & positivity ⇒ no arbitrage: For any h that satisfies X ′h ≥ 0,
p′h = q(X ′h) ≥ 0. (2) no arbitrage ⇒ linear & positivity: no arbitrage ⇒ LOP ⇒
linearity, and positivity follows from z = X ′h ≥ 0 ⇒ q(z) = p′h ≥ 0, for any h.

Note that a functional is positive if it assigns nonnegative value to every pos-
itive element of its domain. It is strictly positive if it assigns strictly positive value
to positive elements.

An Example Let’s have some flavor of no-arbitrage pricing. Consider a financial
market with a money account, a stock, and an European call option on the stock
with strike price 98. Suppose there are two future states. If state 1 realizes, the
stock price declines to 84 from the current price 100. If state 2 happens, the stock
price rises to 112. Suppose the interest rate on the money account is 5%, we want
to obtain a no-arbitrage price c0 for the call option. The following table lists the
payoff structure of our simple financial market.

1A functional is a mapping from a vector space, which may be infinite-dimensional, to real
scalar numbers.

4



Time 0 Time 1
State 1 State 2

Money 1 1.05 1.05
Stock 100 84 112
Call c0 0 (112-98)=14

The idea of no-arbitrage pricing is to form a portfolio of Money and Stock,
h = (α, β)′, that replicates the payoff of the call option, and to deduce the option
price from the current price of the replication portfolio. If there is no arbitrage
opportunities in the market, then the price of option must be the same as that of
the replication portfolio.

We solve the following set of equations with unknown α and β,

1.05α + 84β = 0

1.05α + 112β = 14,

and obtain,
α = −40 β = 1/2.

This means that we borrow 40 from bank and buy a “half” stock. The portfolio
h = (−40, 1/2)′ exactly replicates the payoff of the call option. At time 0, this
portfolio has a value of

100 · 1

2
− 40 = 10.

And this should be the price of the call option.

If the option price is 5, then we can form the following portfolio

(α, β, c) = (45,−1/2, 1)

The current price of the portfolio is zero, but the payoff will be 5.25 next period
whichever state realizes. This is an arbitrage. If the price is 15, readers may verify
that the following portfolio achieves an arbitrage

(α, β, c) = (−35, 1/2,−1).

Obviously, short selling must be allowed to make the above analysis valid.
Borrowing from banks can be considered as shorting the money.

State prices Consider a special type of securities with following payoff,

es = (

s−1︷ ︸︸ ︷
0, 0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸

S

)′.
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When and only when state s happens, the security gives one unit of payoff. Economists
call them Arrow-Debreu securities. In a complete market with S states, all of the S
Arrow-Debreu securities should be available.

Using Arrow-Debreu securities, we can represent any asset payoff x by a port-
folio:

x = (x1, · · · , xS)′ =
S∑
s=1

xses.

Let ϕs = q(es), and
ϕ = (ϕ1, ϕ2, · · · , ϕS)′

ϕ is called the vector of state prices. The no-arbitrage price of x would be

q(x) =
S∑
s=1

xsq(es) =
S∑
s=1

xsϕs = x′ϕ.

Theorem There is no arbitrage if and only if there is a state price vector. To prove
this theorem, we need the Stiemke’s Lemma, which is a theorem of alternatives.

The Stiemke’s Lemma For an m-by-n matrix A, one and only one of the fol-
lowing statements is true:

(a) There exists an x ∈ Rn and x > 0 such that Ax = 0.

(b) There exists a y ∈ Rm with y′A > 0.

Recall that an arbitrage-portfolio is one that satisfies X ′h ≥ 0 and p′h < 0. This
can be stated mathematically,

h′(−p,X) > 0.

According to the Stiemke’s Lemma, there is no such h if and only if there exists a
vector ϕ ∈ RS and ϕ > 0 such that

(−p,X)

(
1
ϕ

)
= 0.

Put differently, we have
p = Xϕ.

The vector ϕ is the desired state price vector. To see this, let X be an S-by-S
identity matrix, which characterizes a market for S Arrow-Debreu securities. We
then have p = ϕ, which means that q(es) = ϕs for all s.
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Example (continued) In the previous example (the market with a money ac-
count and a stock), the payoff matrix and the price vector are as follows,

X =

[
1.05 1.05
84 112

]
, p =

[
1

100

]
.

The state price ϕ can be determined by solving

Xϕ = p,

which yields

ϕ =

[
0.2381
0.7143

]
.

Using the state price vector, we can price the European call option:

c0 = 0.2381× 0 + 0.7143× 14 ≈ 10.

Risk-neutral probability Let

ϕ0 =
S∑
s=1

ϕs =
S∑
s=1

q(es) = q(ι),

where ι is the vector of 1’s. Note that ϕ0 is the price of risk-free zero-coupon bond
with the following yield,

Rf =
1

ϕ0
.

The price of x can be written as

p = q(x) =
S∑
s=1

ϕsxs = ϕ0

S∑
s=1

ϕs

ϕ0

xs.

Define

π̃s =
ϕs

ϕ0
.

We have

π̃s > 0 ∀s and
S∑
s=1

π̃s = 1.

We call (π̃s) risk-neutral probabilities. Using (π̃s), we can represent asset price as

p = ϕ0

S∑
s=1

π̃sxs = R−1
f Ẽx,

where the expectation Ẽ is taken with respect to the risk-neutral probability.
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Example: continued. Let the risk-neutral probability of state 1 be p̃, then the
stock price should satisfy

100 =
1

1.05
(84p̃+ 112(1− p̃)).

So p̃ = 1/4. So the price of call option is

c0 =
1

1.05
(0 · p̃+ 14 · (1− p̃)) =

1

1.05
· 14 · 3

4
= 10.

Stochastic discount factor (SDF) Suppose that the objective probability of
state s is πs. We can represent the asset price as

p = R−1
f

S∑
s=1

πs
π̃s

πs
xs.

Define ms = R−1
f

π̃s

πs , ms > 0. And let m be a random variable taking value ms if
the state s realizes. We have

p =
S∑
s=1

πs(msxs)

= E(mx). (1.1)

m is called the stochastic discount factor (SDF).

1.2 Extension to Continuous States

The pricing formula in (1.1) can be extended to the world of continuous payoffs,
which may be represented by continuous-state random variables. Recall that a
continuous-state random variable is defined as a mapping from the sample space to
the real line,

x ≡ x(ω) : Ω→ R.

Similarly, the SDF m is a R-valued random variable.

We define M = {x ∈ R : Ex2 < ∞}. This set contains all “reasonable”
payoffs. And we define inner product on M as,

〈x1, x2〉 = E(x1x2).

It is well known that M is a Hilbert space with the above inner product. If there
is no arbitrage, then q is a linear positive functional on M. According to Riesz’s
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Representation Theorem, every bounded linear pricing functional q on M can be
represented in terms of the inner product,

q(x) = 〈x,m〉 = E(mx)

for some m ∈M. Since q must be positive to rule out arbitrage, m > 0 almost sure.
The reverse is also true. Hence we may conclude that there is no arbitrage if and
only if m > 0 almost sure.

We now use the pricing formula in (1.1) to understand some key concepts and models
in finance.

Gross return The gross return of an asset with price p and payoff x is R = x/p.
It must satisfy

1 = EmR.

Risk-free rate If x = ι, the vector of 1’s, then it is the payoff of a risk-free bond.
The price of the risk-free bond is p = Em. And the risk-free return is given by

Rf =
1

Em
.

Risk premium Let R = x/p denote the return to an asset with price p and payoff
x. Using p = E(mx) = cov(m,x) + (Em)(Ex), we can represent the expected return
as

ER =
Ex
p

=
1

Em
− cov(m,R)

Em
= Rf −Rfcov(m,R)

Risk premium is defined as the expected return in excess of the risk-free rate, ER−
Rf . We have

ER−Rf = −Rfcov(m,R).

Risk premium is proportional to cov(m,R).

β-pricing For asset i, the gross return can be written as

ERi = Rf +

(
cov(Ri,m)

var(m)

)(
−var(m)

Em

)
.

9



Define βi,m = cov(Ri,m)
var(m)

and λm = −var(m)
Em . We can rewrite the above as

ERi = Rf + βi,mλm.

βi,m measures the systematic risk contained in asset i and λm may be called “price
of risk”.

Factor models Suppose that m has a factor structure like

m = a+ b′f, (1.2)

where f is a vector of factors, b is the vector of factor loadings, and a a constant.
This specification of SDF gives us a factor model of asset pricing. Without loss of
generality, we assume Ef = 0. So we have Em = a = 1/Rf .

Since 1 = E(mRi), we have

E(Ri) =
1

Em
− cov(m,Ri)

Em
=

1

a
− E(Rif

′)b

a
.

Let βi be the regression coefficient of Ri on f , βi ≡ E(ff ′)−1E(fRi). So

E(Ri) =
1

a
− E(Rif

′)E(ff ′)−1E(ff ′)b

a
=

1

a
− β′E(ff ′)b

a
.

Note that E(ff ′)b = Emf . If we define

λ ≡ −RfE(mf),

we have
ERi = Rf + λ′βi. (1.3)

This generalizes the β-pricing model.

The factor models includes the celebrated Capital Asset Pricing Model (CAPM)
model and the Arbitrage Pricing Theory (APT) as special cases.

CAPM The Capital Asset Pricing Model (CAPM) model is most frequently stated
as:

ERi = Rf + βi(ERm −Rf ), (1.4)

where Rm denotes the return on the “market portfolio”. We usually proxy Rm by
the return on a broad stock market index such as S&P 500. βi captures systematic
risk contained in i-th stock, which cannot be diversified away. And (ERm−Rf ) is the
risk premium of the market portfolio, i.e., the price of systematic risk. The CAPM
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model tells us only systematic risk is priced. Bearing idiosyncratic risk, which can
be diversified away using a portfolio, does not get rewarded. For interested readers,
Appendix A.1 provides a classic derivation of the CAPM model using portfolio
optimization.

In practice, βi is estimated by running the following time-series regression for
i-th stock,

Rit −Rft = αi + βi(Rmt −Rft) + εit.

According to CAPM, αi should be zero for all stocks and portfolios.

APT The Arbitrage Pricing Theory (APT) is a linear factor model. We assume
that the asset payoff can be statistically characterized by a factor structure:

Ri = ERi + β′if + εi, (1.5)

where f a K-by-1 vector of demeaned factors, Eεi = 0, Efεi = 0, and Eεiεj = 0
for i 6= j. The price errors (εi) represent idiosyncratic risks that can be diversified
away and hence not priced. If we assume σ(m) <∞ and LOP holds, we have

q(Ri) = ERiq(ι) + β′iq(f).

Since q(Ri) = 1, q(ι) = 1/Rf , we solve the above equation for ERi:

ERi = Rf + β′iλ,

where λ = −Rfq(f). In empirical asset pricing, factor models (e.g., Fama & French
three-factor model) are the main framework for analyzing cross-section returns.

Mean-variance frontier We have

1 = E(mRi) = EmERi + cov(m,Ri)

= EmERi + ρm,Ri
σ(m)σ(Ri)

So

ERi =
1

Em
− 1

Em
ρm,Ri

σ(m)σ(Ri)

= Rf − ρm,Ri

σ(m)

Em
σ(Ri).

Then, since |ρ| ≤ 1,

|ERi −Rf | ≤
σ(m)

Em
σ(Ri).

Notice
ERi−Rf

σ(Ri)
is the Sharpe ratio, and

ERi −Rf

σ(Ri)
≤ Rfσ(m).
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Discounted cash flow valuation Consider a stock with price process pt and
dividend process dt. Using the formula pt = Etmt+1xt+1, we have

pt = Et[mt+1(pt+1 + dt+1)]

= Et[mt+1(Et+1[mt+2(pt+2 + dt+2)] + dt+1)]
...

= Et

(
n∏
j=1

mt+j

)
pt+n +

n∑
i=1

Et

(
i∏

j=1

mt+j

)
dt+i

= Et

(
∞∏
j=1

mt+j

)
p∞ +

∞∑
i=1

Et

(
i∏

j=1

mt+j

)
dt+i

The first term is called the rational bubble. For it to exist as n→∞, pt+n must also
go to infinity. The second term on the last line is the discounted cash flow (DCF)
value of the stock. If we assume that the dividend process is known at time t, and
mt = 1/(1 + r) with r > 0, then the second term reduces to the familiar

pt =
∞∑
i=1

dt+i
(1 + r)i

.
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Chapter 2

Mathematical Background

2.1 Probability Setup

Random Variable

A random variable X is defined as a mapping from sample space Ω to R with a
probability measure P defined on a σ-field of Ω, F . The triple (Ω,F ,P) is called the
probability measure space.

A σ-field of Ω is a collection of subsets of Ω containing Ω itself and the empty
set φ, and closed under complements, countable unions. In mathematical language,
the random variable X is a F -measurable function from Ω to R. Being F -measurable
is defined as

{ω ∈ Ω|X(ω) ≤ x} ∈ F , x ∈ R.
Or, X−1(B) ∈ F for every Borel set B ∈ B(R). B(R) is the smallest σ-field contain-
ing all open sets of R. We can understand Borel sets as “nice” sets that we mortals
can grasp, for example intervals like [a, b]. We are interested in knowing probabilities
of X falling into these nice sets (e.g., P(X(ω) ∈ [a, b])). Being F -measurable means
that the inverse image of these nice sets, which are subsets of Ω, are elements of F .

In intuitive terms, the σ-field F is a collection of events. To see this, consider
throwing dimes for three times, the sample space Ω is

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

One σ-field on this sample space is F = 2Ω, the power set of Ω that contains all
subsets of Ω including ∅ and Ω. One element of F is

{HHH,HHT,HTH,HTT}.
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This is an event that may be called “Head appear in the first throw”. For another
example, the event {HTH,HTT} may be called “First Head, second Tail”. So X
being F -measurable means that X−1(B) is indeed an event in F .

The σ-field generated by a random variable X, denoted σ(X), is defined as

σ(X) = {X−1(B)|B ∈ B(R)},

where B(R) denotes the Borel σ-field of R. Roughly speaking, σ(X) is the collection
of events we may know through observing X.

2.2 Continuous-Time Stochastic Process

A stochastic process is a sequence of random variables ordered by time. We denote
a stochastic process by X = (Xt), t ∈ T , where T is an index set. The index set T
can be a discrete set such as {1, 2, ...}, or a continuous set, say [0, 1]. If the index
set is a continuous set, then we call X a continuous-time stochastic process.

More rigorously, X is a mapping from the product space of Ω × T to R. So
we may write Xt = Xt(ω) = X(ω, t). X(t, ·) is a random variable, and X(·, ω) is a
sample path or realization of X.

A filtration is a non-decreasing sequence of σ-fields ordered by time t, (Ft).
Being non-decreasing means Fs ⊂ Ft if s < t. Recall that a σ-field is a collection of
events. The more inclusive a σ-field is, the more we may possibly know about the
sample space Ω. So we can roughly think of σ-fields as information sets. A filtration
is thus an ever-finer sequence of information sets.

The natural filtration of X = (Xt) is defined by Ft = σ((Xs)s≤t), that is, the
σ-field generated by ((Xs)s≤t), or intuitively speaking, the information contained in
the stochastic process up to time t.

A stochastic process X = (Xt) is said to be adapted to a filtration (Ft) if, for
every t ≥ 0, Xt is a Ft-measurable random variable.

2.2.1 Brownian Motion

A one-dimensional Brownian motion (BM) is defined as a continuous-time R-valued
process W = (Wt) satisfying

(i) Continuous sample path almost sure (a.s.);

14



(ii) Independent Gaussian increment: Let Fs be the natural filtration of Wt. For
any s < t, Wt −Ws is independent of Fs and Wt −Ws|Fs ∼ N(0, t − s) for
t ≥ s;

(iii) W0 = 0 a.s.

Note that Wt ∼ N(0, t), and (Wt1 ,Wt2 , ...,Wtn)′ is multivariate normal. To see
the latter, we examine a bivariate case:(

Ws

Wt

)
=

(
1 0
1 1

)(
Ws

Wt −Ws

)
.

It is also clear that Wt|Ws = x ∼ N(x, t− s). Furthermore, we can easily prove the
following properties:

• Time-homogeneity
Vt = Wt+s −Ws for any fixed s is a BM independent of Fs.

• Symmetry
Vt = −Wt is a BM.

• Scaling
Vt = cWt/c2 is a BM.

• Time inversion
V0 = 0, Vt = tW1/t, t > 0 is a BM.

2.2.2 Martingale

A stochastic process Mt is a martingale with respect to a filtration Ft if M is adapted
to F and

E(Mt|Fs) = Ms for s < t.

When E(Mt|Fs) ≥Ms, we call Mt a sub-martingale. When E(Mt|Fs) ≤Ms, we call
it a sup-martingale.

Remarks: (1) It is clear that Brownian motion is martingale.

(2) W 2
t − t is a martingale.
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Proof Write W 2
t = (Wt −Ws + Ws)

2 = (Wt −Ws)
2 + W 2

s + 2(Wt −Ws)Ws with
s < t. Hence E(W 2

t |Fs) = (t− s) +W 2
s . Hence E(W 2

t − t|Fs) = W 2
s − s.

Note that the first step in the proof is called incrementalization, which produces
independent increments. Using the same technique, we can prove:
(3) exp(λWt − λ2t/2) is a positive martingale.

Using the law of iterative expectation, we can prove:
(4) For any random variable X, let ξt = E(X|Ft), then ξ = (ξt) is a martingale with
respect to F .

Using Jensen’s inequality, we can prove:
(5) |Mt|p is a submartingale if p ≥ 1 and E|Mt|p <∞.

2.2.3 Markov Process

(Xt,Ft) ∼ a Markov process if the distribution of Xt conditional on Fs with s < t
is identical to the distribution of Xt conditional on σ(Xs). Intuitively, at time s,
Xs contains all information useful for predicting Xt and all past history of X before
time s is irrelevant.

The likelihood of the discrete samples of a Markov process has a nice iterative
representation. Choose t1, t2, ..., tn arbitrarily. The likelihood of (Xt1 , Xt1 , ..., Xtn),
in general, is given by

f(Xt1 , Xt1 , ..., Xtn) = f(Xt1) · f(Xt2 |Xt1) · f(Xt3 |Xt1 , Xt2) · · · f(Xtn|Xt1 , ..., Xtn−1).

For Markov processes, we have

f(Xt1 , Xt1 , ..., Xtn) = f(Xt1) · f(Xt2|Xt1) · f(Xt3|Xt2) · · · f(Xtn|Xtn−1).

So to determine the distribution of a continuous Markov process, we just need to
determine the distribution of Xt|Xs = x for any t and s.

Transition probability The transition probability of a Markov process (Xt) is
given by

Ps,t(x,A) = P{Xt ∈ A|Xs = x}.

The transition probability completely determines the distribution of Markov pro-
cesses.
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Homogenous Markov process If the transition probability of a Markov process
(Xt) does not depend on the starting time,

P{Xs+t ∈ A|Xs = x} = P{Xt ∈ A|X0 = x},

we call it a homogenous Markov process. In this case, we have a simpler notation
for transition probability,

Pt(x,A) = Ps,s+t(x,A) = P{Xt ∈ A|X0 = x}.

Conditional expectation operator Pt(x,A) describes a distribution by assign-
ing probability values to subsets A. We can also describe distribution by its gener-
alized moments Ef(Z), where Z = Xt|Xs = x in our case. If we know Ef(Z) for
enough number of f , then we know the distribution of Z. In fact, we can choose f
to be

f(·) = I{· ∈ A}.
Then Ef(Z) is exactly P{Z ∈ A},

Ef(Z) = EI{Z ∈ A} = P{Z ∈ A}.

The following notation is often used for homogenous Markov processes,

Ptf(x) ≡ Pt(x, f) = E(f(Xt)|X0 = x). (2.1)

Pt is linear operator on a vector space of real-valued functions:

Pt : f 7−→ Ptf.

Transition density Transition density, denoted by p(t, x, y), may be defined with
respect to transition probability,

Pt(x,A) =

∫
A

p(t, x, y)dy. (2.2)

Since Ptf(x) is a conditional expectation, we have

Ptf(x) =

∫ ∞
−∞

f(y)p(t, x, y)dy.

Example: Brownian motion. The property of independent increment ensures
that the Brownian motion is a Markov process. And we have Wt+s|Ws = x ∼
N(x, t). So Wt is a homogenous Markov process. The transition density is given by

p(t, x, y) =
1

2π
√
t

exp

(
−(y − x)2

2t

)
.
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2.2.4 Chapman-Kolmogorov Equation

For any homogeneous Markov process, we have

Ps+t(x,A) =

∫
Ps(x, dy)Pt(y, A). (2.3)

Proof We have

Ps+t(x,A) = P (Xt+s ∈ A|X0 = x)

= E [P (Xt+s ∈ A|Xs) |X0 = x]

= E [f(Xs)|X0 = x] ←↩ f(y) = P (Xt+s ∈ A|Xs = y) = Pt(y, A)

= Psf

=

∫
Ps(x, dy)f(y)

=

∫
Ps(x, dy)Pt(y, A).

In terms of the conditional expectation operator, we have for any positive measurable
function f ,

Ps+tf = PsPtf. (2.4)

Proof We have

Pt+sf(x) =

∫
Ps+t(x, dz)f(z)

=

∫ ∫
Ps(x, dy)Pt(y, dz)f(z)

=

∫
Ps(x, dy)

∫
Pt(y, dz)f(z)

= (PsPtf)(x).

Set f = 1A, this becomes the Chapman-Kolmogorov Equation (2.3).

2.3 Ito Calculus

2.3.1 Ito Integral

In this section we study the following integral:∫ t

0

KsdMs,
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where (Mt,Ft) is a continuous martingale and K is adapted to F .

First we study the ordinary Lebesgue-Stieltjes integral:∫ t

0

f(s)dg(s).

For any partition 0 = t0 < t1 < t2 < · · · < tn = t, define

S =
∑
i

f(si)[g(ti)− g(ti−1)],

where ti−1 ≤ si ≤ ti. Let πt = maxi |ti − ti−1|. We say that the Lebesgue-Stieltjes
integral exists, if limπt→0 S exists for any si ∈ [ti−1, ti].

Suppose that f is continuous and g is of bounded variation, ie,∑
i

|g(ti)− g(ti−1)| <∞.

For example, if g is monotonely increasing, then it is of bounded variation. We look
at

S1 =
∑

f(si)[g(ti)− g(ti−1)]

S2 =
∑

f(ti−1)[g(ti)− g(ti−1)].

And find that

|S1 − S2| ≤
(

max
i
|f(si)− f(ti−1)|

)(∑
i

|g(ti)− g(ti−1)|

)
→ 0.

So the Lebesgue-Stieltjes integral exists.

However, it is well known that a martingale M is of bounded variation if and
only if M is constant. In other words,

∫ t
0
KsdMs cannot be defined “path-by-path”

as a Lebesgue-Stieltjes integral. Instead, we define∫ t

0

KsdMs = p lim
πt→0

∑
i

Kti−1
(Mti −Mti−1

). (2.5)

The choice of Kti−1
in (2.5) makes (2.5) an Ito integral. If we choose

(
Kti−1

+Kti

)
/2

instead of the left endpoint of each inteval, then we have Stratonovich integral. If
K is bounded, measurable, and Ft-adapted, then the Ito integral in (2.5) is always
well defined.
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Quadratic Variation For a continuous martingale M , the quadratic variation of
M , denoted by [M ], is defined as

[M ]t = plimπt→0

n∑
i=1

(Mti −Mti−1
)2. (2.6)

It is clear that [M ]t is non-decreasing, thus of bounded variation. Thus it is inte-
grable in the Stieltjes sense.

For any continuous process X, the first-order variation on [0, t] is captured
by
∑
|Xti −Xti−1

|, and
∑
|Xti −Xti−1

|2 captures the second order. Intuitively, for
locally smooth stochastic processes, the first-order variation dominates. For locally
volatile processes, the first-order variation explodes, but the second-order variation
may be well defined.

Example For a Brownian motion W , we have [W ]t = t. To show this, partition
[0, t] into n intervals of equal length ∆ = t/n. we have by the law of large number,

n
1

n

∑
i

(Wi∆ −W(i−1)∆)2 →p nE(Wi∆ −W(i−1)∆)2 = n∆ = t.

Quadratic Covariation Given two continuous martingales, M and N , their
quadratic covariation is defined by

[M,N ]t = plimπt→0

n∑
i=1

(Mti −Mti−1
)(Nti −Nti−1

).

It is straightforward to show that

[X + Y ]t = [X]t + [Y ]t + 2[X, Y ]t.

It is also easy to show that, given a continuous martingale M and bounded-variation
process A, we have

[M,A]t = 0.

Semimartingale If X can be written as Xt = At+Mt, where (Mt) is a continuous
martingale and (At) a continuous adapted process of finite variation, then X is
called a continuous semimartingale. A constitutes trend, while M determines local
variation. A continuous semimartingale X = A+M has a finite quadratic variation
and [X]t = [M ]t.

20



It is clear that Ito integral with respect to semimartingale,
∫ t

0
KsdXs, is well defined.

We have ∫ t

0

KsdXs =

∫ t

0

KsdAs +

∫ t

0

KsdMs.

The second item is Ito integral, and the first item is essentially a Stieltjes integral.

Properties of Ito Integral Consider Pt =
∫ t

0
KsdMs = plim|πt|→0

∑
iKti−1

(Mti−
Mti−1

), where (Mt,Ft) ∼ is continuous martingale, Kt is adapted, and
∫ t

0
K2
sds <∞

for all t. Pt has the following properties,

(a) Pt is a Martingale.

(b) [P ]t =
∫ t

0
K2
sd[M ]s.

(c) If Pt =
∫ t

0
KsdMs and Qt =

∫ t
0
HsdNs, then

[P,Q]t =

∫ t

0

KsHsd[M,N ]s.

To understand (a) intuitively, note that

Pti − Pti−1
≈ Kti−1

(Mti −Mti−1
)

is a martingale difference sequence. To understand (b), we write

[P ]t = plim
∑

(Pti − Pti−1
)2

= plim
∑

K2
ti−1

(Mti −Mti−1
)2

≈ plim
∑

K2
ti−1

([M ]ti − [M ]ti−1
).

Recall that [M ]ti = plim
∑i

k=1(Mti −Mti−1
)2.

Examples (a) If Mt =
∫ t

0
WsdWs, then [M ]t =

∫ t
0
W 2
s ds.

(b) If Mt =
∫ t

0
WsdWs, then [M,W ]t =

∫ t
0
Wsd[W,W ]s =

∫ t
0
Wsds.

2.3.2 Ito’s Formula

Integration by parts If X and Y are two continuous semimartingales, then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X, Y ]t. (2.7)

21



In particular,

X2
t = X2

0 + 2

∫ t

0

XsdXs + [X]t.

Proof It suffices to prove the second statement. We have

X2
ti
−X2

ti−1
= 2Xti−1

(Xti −Xti−1
) + (Xti −Xti−1

)2.

Taking sum and limit, we obtain the desired result. To prove the first statement,
note that XtYt = [(Xt + Yt)

2 −X2
t − Y 2

t ]/2.

In differential form, we may rewrite (2.7) as

d(XtYt) = XtdYt + YtdXt + d[X, Y ]t.

Recall that for ordinary functions f(t) and g(t), we have∫ b

a

f(t)dg(t) = f(t)g(t)|ba −
∫ b

a

g(t)df(t).

Rearranging terms, we have

f(b)g(b) = f(a)g(a) +

∫ b

a

f(t)dg(t) +

∫ b

a

g(t)df(t).

Now we introduce the celebrated Ito’s formula.

Ito’s formula Let X be a continuous semimartingale, and f ∈ C2(R), then f(X)
is a continuous semimartingale and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d[X]s. (2.8)

In differential form, we may write the Ito’s formula as

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t. (2.9)
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Proof We prove by induction. Suppose dXn
t = nXn−1

t dXt + n(n−1)
2

Xn−2
t d[X]t, we

prove dXn+1
t = (n+ 1)Xn

t dXt+
n(n+1)

2
Xn−1
t d[X]t. It is obviously true for n = 1. For

arbitrary n,

d(Xt ·Xn
t ) = Xn

t dXt +XtdX
n
t + d[X,Xn]t

= Xn
t dXt +Xt(nX

n−1
t dXt +

n(n− 1)

2
Xn−2
t d[X]t) + nXn−1

t d[X]t

= (n+ 1)Xn
t dXt +

n(n+ 1)

2
Xn−1
t d[X]t.

So (2.9) is valid for polynomial functions. We can infer it remains true for all f ∈ C2.

Example Since dW 2
t = 2WtdWt + dt, W 2

1 =
∫ 1

0
WtdWt + 1, so we have∫ 1

0

WtdWt = (W 2
1 − 1)/2.

Next we introduce the multivariate Ito’s formula. Let X = (X1, ..., Xd) be a vec-
tor of continuous semimartingales and f ∈ C2(Rd,R); then f(X) is a continuous
semimartingale and

f(Xt) = f(X0) +
∑
i

∫ t

0

∂f

∂xi
(Xs)dX

i
s +

1

2

∑
i,j

∫ t

0

∂2f

∂xi∂xj
(Xs)d[X i, Xj]s. (2.10)

In differential form, we have

df(Xt) =
∑
i

∂f

∂xi
(Xt)dX

i
t +

1

2

∑
i,j

∂2f

∂xi∂xj
(Xt)d[X i, Xj]t. (2.11)

In particular, for the bivariate case,

df(Xt, Yt) = f1(Xt, Yt)dXt + f2(Xt, Yt)dYt

+
1

2
f11(Xt, Yt)d[X]t + f12(Xt, Yt)d[X, Y ]t +

1

2
f22(Xt, Yt)d[Y ]t

Furthermore, if A is of bounded variation, we have

df(Xt, At) = f1(Xt, At)dXt + f2(Xt, At)dAt +
1

2
f11(Xt, At)d[X]t.

In particular, if dXt = µtdt+ σtdWt, then

df(Xt, t) = f1(Xt, t)dXt + f2(Xt, t)dt+
1

2
f11(Xt, t)d[X]t

= (µtf1 + f2 +
1

2
σ2
t f11)dt+ σtf1dWt.

This special case often appears as “Ito’s formula”.
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Example Consider ξt = exp(λMt − λ2

2
[M ]t) ≡ f(Mt, [M ]t), where M is a contin-

uous martingale. ξt is called an exponential martingale. We have

f1 = λf

f2 = −λ
2

2
f

f11 = λ2f,

So

d exp(λMt −
λ2

2
[M ]t) = λ exp(λMt −

λ2

2
[M ]t)dMt,

or

exp(λMt −
λ2

2
[M ]t) = 1 + λ

∫ t

0

exp(λMs −
λ2

2
[M ]s)dMs.

Note that the exponential martingale is positive.

In general, if Mt is a martingale, f(Mt) is not necessarily a martingale, but it is
always a semimartingale. If Xt is semimartingale, the f(Xt) is still semimartingale.
So we say that the class of semimartingales is “invariant” under composition with
C2-functions.

2.4 Diffusions

2.4.1 Definition and Properties

A diffusion is a continuous-time semimartingale that is characterized by the following
stochastic differential equation,

dXt = µ(Xt)dt+ σ(Xt)dWt,

where µ(·) is called the drift function and σ(·) is called the diffusion function. In
physics, the diffusion is used to describe the movement of a particle suspended in
moving liquid.

In integral form, we have

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs.

Since Xt is built on a Brownian motion, it is Markov. And the fact that the func-
tional form of µ(·) and σ(·) do not change over time ensures that Xt is homogenous
Markov.
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Let ∆ be a short time interval. On [t, t+ ∆], we have

Xt+∆ −Xt =

∫ t+∆

t

µ(Xs)ds+

∫ t+∆

t

σ(Xs)dWs.

It is clear that

lim
∆→0

1

∆
E(Xt+∆ −Xt|Xt = x) = µ(x).

So µ measures the rate of instantaneous changes in conditional mean. We also have,

lim
∆→0

1

∆
var(Xt+∆ −Xt|Xt = x) = σ2(x).

So σ2 measures the rate of instantaneous changes in conditional volatility.

It is easy to see that if µ is bounded,∫ t+∆

t

µ(Xs)ds = O(∆),

and that if σ is bounded, ∫ t+∆

t

σ(Xs)dWs = O(∆1/2).

So if we look at small intervals, the diffusion term dominates. In fact, drift term is
not identifiable in small intervals. In the long run, however, the drift part dominates
since ∫ T

0

µ(Xs)ds = O(T ),

while ∫ T

0

σ(Xs)dWs = O(T 1/2).

Linear Drift The linear (or affine) drift function is widely used in modeling pro-
cesses with mean reversion. Specifically, we may have

µ(x) = κ(u− x),

where κ and u are parameters. Since E(Xt+∆ −Xt) ≈ ∆κ(u−Xt). So when κ > 0,
the linear drift tend to be “mean reverting”, producing downward correction when
Xt > u. However, u may or may not be the mean of the process. When κ = 0, the
process is a martingale. When κ < 0, the process is unstable.
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Constant-Elasticity Diffusion Many diffusion processes are endowed with the
following form of diffusion function,

σ(x) = c|x|ρ,

where c and ρ are constants. From

log σ2(x) = log c2 + 2ρ log |x|,

we have
d log σ(x)

d log |x|
= ρ.

This form of diffusion function is hence called constant-elasticity diffusion.

2.4.2 Useful Diffusions

In the following, we introduce a number of useful parametric diffusion models.

Brownian motion with drift

dXt = µdt+ σdWt

Xt = X0 + µt+ σWt

Transition distribution: Xt+∆|Xt = x ∼ N(x+ µ∆, σ2∆).

Geometric Brownian motion

dXt = µXtdt+ σXtdWt

By Ito’s formula,

d logXt =
1

Xt

dXt −
1

2X2
t

d[X]t

Since d[X]t = σ2X2
t dt,

d logXt = (µ− 1

2
σ2)dt+ σdWt.
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Ornstein-Uhlenbeck process The Ornstein-Uhlenbeck process has the following
SDE representation,

dXt = κ(µ−Xt)dt+ σdWt.

To derive the transition distribution, we define Yt = Xt − µ. Then

dYt = −κYtdt+ σdWt.

d(exp(κt)Yt) = κ exp(κt)Ytdt+ exp(κt)dYt

= κ exp(κt)Ytdt+ exp(κt)(−κYtdt+ σdWt)

= σ exp(κt)dWt

So

exp(κt)Yt = Y0 + σ

∫ t

0

exp(κs)dWs,

ie,

Yt = exp(−κt)Y0 + σ

∫ t

0

exp(−κ(t− s))dWs.

So

Xt = µ+ exp(−κt)(X0 − µ) + σ

∫ t

0

exp(−κ(t− s))dWs.

Given Y0 = y, what is the distribution of Yt?

Yt = exp(−κt)Y0 + σ

∫ t

0

exp(−κ(t− s))dWs

∼ N(exp(−κt)y, σ2 1− exp(−2κt)

2κ
).

Let t→∞,

Yt ∼ N(0,
σ2

2κ
).

So if Y0 ∼ N(0, σ
2

2κ
), Yt is stationary and Yt ∼ N(0, σ

2

2κ
).

Feller’s squared-root process The Feller’s squared-root process has the follow-
ing representation,

dXt = κ(µ−Xt)dt+ σ
√
XtdWt.

If 2κµ
σ2 ≥ 1, then Xt ∈ [0,∞). Like Ornstein-Uhlenbeck process, Feller’s squared-root

process is also a stationary process. And it’s transition distribution is non-central
Chi-square, and marginal distribution gamma. It is used by Cox, Ingersol, and Ross
(CIR) to model interest rates.
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Infinitestimal generator Let Pt be the condition expectation operator defined
in (2.1) for a homogenous Markov process. We may understand P0 as the identity
operator, that is, P0f = f . Define the infinitestimal generator, denoted by A, as

Af(x) = lim
t→0

Ptf(x)− P0f(x)

t
= lim

t→0

Ptf(x)− f(x)

t
. (2.12)

If Xt follows dXt = µ(Xt)dt+ σ(Xt)dWt, then we have

f(Xt) = f(X0) +

∫ t

0

(µf ′ +
1

2
σ2f ′′)(Xs)ds+

∫ t

0

(σf ′)(Xs)dWs.

Hence

Ptf(x) = f(x) + (µf ′ +
1

2
σ2f ′′)(x)t+O(t2).

So

Af = lim
t→0

Ptf − f
t

= µf ′ +
1

2
σ2f ′′.

Using this infinitestimal generator, we can write Ptf(x) = E(f(Xt)|X0 = x) in
the form of a Taylor series expansion,

Ptf(x) = f(x) + Af(x)t+
1

2
A2f(x)t2 + · · ·+ 1

j!
Ajf(x)tj +O(tj+1). (2.13)

Kolmogrov forward and backward equations We have

d

dt
Ptf = lim

s→0

Pt+sf − Ptf
s

= lim
s→0

Pt(Psf − f)

s
= PtAf (2.14)

= lim
s→0

Ps(Ptf)− (Ptf)

s
= APtf (2.15)

(2.14) and (2.15) are Kolmogrov forward and backward equations, respectively. The
above also proves that Pt and A commutes.

Using transition density (p(t, x, y)) defined in (2.2), we have

PtAf(x) =

∫
(Af)(y)p(t, x, y)dy =

∫
(µf ′ +

1

2
σ2f ′′)(y)p(t, x, y)dy

= −
∫
f(y)

∂

∂y
(µ(y)p(t, x, y))dy +

∫
f(y)

∂2

∂y2
(
1

2
σ2(y)p(t, x, y))dy.

Since Ptf(x) =
∫
f(y)p(t, x, y)dy,

d

dt
Ptf(x) =

∫
f(y)

∂

∂t
p(t, x, y).
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So (2.14) results in

∂

∂t
p(t, x, y) = − ∂

∂y
(µ(y)p(t, x, y)) +

1

2

∂2

∂y2
(σ2(y)p(t, x, y)), (2.16)

which is the more common form of the Kolmogrov forward equation. Similarly,

APtf(x) = A

∫
f(y)p(t, x, y)dy

= (µ(x)
∂

∂x
+

1

2
σ2(x)

∂2

∂x2
)

∫
f(y)p(t, x, y)dy

=

∫
f(y)

(
µ(x)

∂

∂x
p(t, x, y) +

1

2
σ2(x)

∂2

∂x2
p(t, x, y)

)
dy.

Hence
∂

∂t
p(t, x, y) = µ(x)

∂

∂x
p(t, x, y) +

1

2
σ2(x)

∂2

∂x2
p(t, x, y), (2.17)

which is the backward Kolmogrov equation.

2.4.3 Discrete-Time Approximation

For many diffusions, the transition distributions are very complicated. Often they do
not have closed-form density functions. It is thus desirable to have approximations
of transition distributions. The approximation error shall go to zero as intervals of
discrete-time observations go to zero.

Euler approximation Suppose that we observe a discrete-time sequence, X∆,
X2∆, ..., Xn∆. The interval between observations is ∆. We seek an approximation
of the conditional distribution of Xn∆|X(n−1)∆. Let ∆ be small. We have

Xi∆ −X(i−1)∆ =

∫ i∆

(i−1)∆

µ(Xt)dt+

∫ i∆

(i−1)∆

σ(Xt)dWt

= ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+

∫ i∆

(i−1)∆

[µ(Xt)− µ(X(i−1)∆)]dt+

∫ i∆

(i−1)∆

[σ(Xt)− σ(X(i−1)∆)]dWt

≈ ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

This is called Euler Approximation. Under this approximation, Xi∆|X(i−1)∆ = x ∼
N(∆µ(x),∆σ2(x)).
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Milstein approximation We have something better. Consider

µ(Xt)− µ(X(i−1)∆)

=

∫ t

(i−1)∆

µ′(Xs)dXs +
1

2

∫ t

(i−1)∆

µ′′(Xs)d[X]s

=

∫ t

(i−1)∆

(µ′(Xs)µ(Xs) +
1

2
µ′′(Xs)σ

2(Xs))ds+

∫ t

(i−1)∆

µ′(Xs)σ(Xs)dWs,

and

σ(Xt)− σ(X(i−1)∆)

=

∫ t

(i−1)∆

σ′(Xs)dXs +
1

2

∫ t

(i−1)∆

σ′′(Xs)d[X]s

=

∫ t

(i−1)∆

(σ′(Xs)µ(Xs) +
1

2
σ′′(Xs)σ

2(Xs))ds+

∫ t

(i−1)∆

σ′(Xs)σ(Xs)dWs.

And ∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µµ′ +
σ2µ′′

2
) = O(∆2)∫ i∆

(i−1)∆

∫ t

(i−1)∆

(σµ′)dWsdt = O(∆3/2)∫ i∆

(i−1)∆

∫ t

(i−1)∆

(σσ′)(Xs)dWsdWt = O(∆) (∗)

So if we want to have an accuracy of O(∆), the last term cannot be ignored. To
have a better approximation,

(∗) = σσ′(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dWsdWt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

[(σσ′)(Xs)− (σσ′)(X(i−1)∆)]dWsdWt

= σσ′(X(i−1)∆)

∫ i∆

(i−1)∆

(Wt −W(i−1)∆)dWt + o(∆)

=
1

2
[(Wi∆ −W(i−1)∆)2 −∆]σσ′(X(i−1)∆) + o(∆).

The last equality is obtained by applying Ito’s formula,

d(
1

2
(Wt −W(i−1)∆)2) = (Wt −W(i−1)∆)dWt +

1

2
dt.
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So here’s Milstein Approximation,

Xi∆ −X(i−1)∆ = ∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+
1

2
[(Wi∆ −W(i−1)∆)2 −∆]σσ′(X(i−1)∆) + o(∆).

2.4.4 Estimation*

MLE

Suppose the data generating process is parametric,

dXt = µ(Xt, θ0) + σ(Xt, θ0)dWt,

where θ0 is a parameter vector.

We observe Xt at evenly spaced time points, ∆, 2∆, ..., n∆ ≡ T . From these
observations we want to estimate θ0.

Simple Cases When p(t, x, y) has closed-form expression (GBM, Ornstein-Uhlenbeck,
CIR), we can easily form the log likelihood function as

L =
n∑
i=1

l(∆, X(i−1)∆, Xi∆),

where
l(∆, X(i−1)∆, Xi∆) = log p(∆, X(i−1)∆, Xi∆).

Here we may safely ignore the log likelihood function of X0.

Naive MLE When p(t, x, y) does not have a closed-form expression, we may apply
MLE to the Euler approximation of the original diffusion,

Xi∆ = X(i−1)∆ + µ(X(i−1)∆, θ0)∆ + σ(X(i−1)∆, θ0)Zi,

where (Zi) are a sequence of independent N(0,∆) random variables.

Exact MLE We may also obtain p(∆, X(i−1)∆, Xi∆) by solving Kolmogrov’s for-
ward or backward equation numerically. A boundary problem for the forward equa-
tion can be specified as

∂

∂t
p(t, x, y) = − ∂

∂y
(µ(y)p(t, x, y)) +

1

2

∂2

∂y2
(σ2(y)p(t, x, y)),
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with

p(0, x, y) = δ(x− y)

p(t, x,∞) = p(t, x,−∞) = 0.

For each i, let x = X(i−1)∆, we solve for p(∆, X(i−1)∆, Xi∆).

Approximate MLE The idea is to construct a closed-form sequence of approxi-
mations to p(∆, X(i−1)∆, z): p

(J)(∆, X(i−1)∆, z), J = 1, 2, 3, ... As J →∞, p(J) → p.

We first transform Xt into a process Zt whose transition density pZ is close
to N(0, 1), making possible an expansion of pZ around N(0, 1). This involves two
steps.

(1) Transform Xt into Yt by

Yt =

∫ Xt ds

σ(Xs)
=: γ(Xt).

γ is obviously increasing and hence invertible. Using Ito’s formula,

dγ(Xt) =

(
µ(Xt)

σ(Xt)
− 1

2
σ′(Xt)

)
dt+ dWt.

Hence
dYt = µY (Yt)dt+ dWt,

where

µY (Yt) =
µ(γ−1(Yt))

σ(γ−1(Yt))
− 1

2
σ′(γ−1(Yt)).

(2) Transform Yt into Zt by

Zt = ∆−1/2(Yt − y0).

Now define the approximation to pZ(∆, z0, z) as

p
(J)
Z (∆, z0, z) = φ(z)

J∑
j=0

ξ(j)Hj(z),

where φ is the density function for standard normal distribution and (Hj(z)) are
Hermite polynomials:

Hj(z) = ez
2/2 d

j

dzj

(
e−z

2/2
)
, j ≥ 0.
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ξ(j) satisfies

ξ(j) =
1

j!

∫
Hj(z)pZ(∆, z0, z)dz

=
1

j!

∫
Hj(z)∆1/2pY (∆, y0,∆

1/2z + y0)dz

=
1

j!

∫
Hj(∆

−1/2(y − y0))pY (∆, y0, y)dy

=
1

j!
E
(
Hj(∆

−1/2(Y∆ − y0))|Y0 = y0

)
. (2.18)

Note that pY (∆, y0, y) = ∆−1/2pZ(∆, z0,∆
−1/2(y−y0)). Now let f(y) = Hj(∆

−1/2(y−
y0)). (2.18) reduces to P∆f(y0), which allows Taylor-type expansion,

P∆f(y0) = f(y0) +
K∑
k=1

1

k!
(Akf)(y0)∆k +O(∆K+1).

We choose the orders of approximation J and K. Then ξ and thus p
(J)
Z (∆, z0, z)

can be explicitly calculated. We then transform p
(J)
Z (∆, z0, z) back to p

(J)
X (∆, x0, x),

which is an approximation of pX(∆, x0, x).

GMM

Naive GMM We have

dXt = µ(Xt, θ0) + σ(Xt, θ0)dWt.

By Euler approximation,

Xt+∆ ≈ Xt + µ(Xt, θ0)∆ + σ(Xt, θ0)(Wt+∆ −Wt).

Let εt+∆ = Xt+∆ −Xt + µ(Xt, θ0)∆, we have

E(εt+∆|Xt) = 0

E(ε2
t+∆|Xt) = σ2(Xt, θ0)∆.

So we at least have four moment conditions:

E(εt+∆) = 0

E(εt+∆Xt) = 0

E(ε2
t+∆ − σ2(Xt, θ0)∆) = 0

E[(ε2
t+∆ − σ2(Xt, θ0)∆)Xt] = 0
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Simulated Moment Estimation The idea is to use simulation to generate sim-
ulated moments, which are matched with sample moments.

The sample moment is simply

Ĝn =
1

n

n∑
i=1

f(Xi∆).

For each choice of parameter vector θ, we simulate a sequence of Xθ
b∆, b = 1, 2, ..., B,

where B is a large number. The simulated moments are thus

G̃(θ) =
1

B

B∑
b=1

f(Xθ
b∆).

Let
Gn(θ) = G̃(θ)− Ĝn.

The GMM estimator is given as

θ̂n = argminθG
′
n(θ)WnG

′
n(θ),

where Wn is an appropriate distance matrix. See Gallant and Tauchen (1996) for
more details.

The key assumption for the above strategy to work is that Xt is geometrically
ergodic. Geometrical Ergodicity means that for some ρ ∈ (0, 1), there is a probability
measure P such that for any initial point x,

ρ−t‖Pt(x, ·)− P‖v → 0 as t→∞,

where ‖ · ‖v is the total variation norm defined as

‖u‖v = sup
A
|u(A)|.

Exact GMM If we assume that Xt is stationary, then Ef(Xt) does not depend
on t. This leads to

d

dt
Ef(Xt) = lim

∆→0

1

∆
(Ef(Xt+∆)− Ef(Xt))

= E
[

lim
∆→0

1

∆
(Ef(Xt+∆)− Ef(Xt)) |Xt

]
= E

[
lim
∆→0

1

∆
(Ef(X∆)− Ef(X0)|X0 = Xt)

]
= EAf(Xt) = 0 (2.19)
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(2.19) holds for any measurable function and may serve enough number of moment
conditions for GMM.

We can find more moment conditions. Define

P ∗t f
∗(y) = E (f ∗(X0)|Xt = y.) ,

where f ∗ is any measurable function. Obviously P ∗0 f
∗ = f ∗. And we define the

backward infinitestimal generator

A∗f ∗ = lim
t→0

P ∗t f
∗ − f ∗

t
.

P ∗t is the adjoint of Pt. To see this,

〈f ∗(X0), Ptf(X0)〉 ≡ E [f ∗(X0)E(f(Xt)|X0)]

= E [f ∗(X0)f(Xt)]

= E [E(f(X0)|Xt)f(Xt)]

= 〈P ∗t f ∗(Xt), f(Xt)〉
= 〈P ∗t f ∗(X0), f(X0)〉

The last equality uses the stationarity of Xt. We can also show that A∗ is the adjoint
of A. Then we have

〈PtAf(X0), f ∗(X0)〉 = 〈APtf(X0), f ∗(X0)〉 = 〈f(X0), P ∗t A
∗f ∗(X0)〉.

The inner product on the left,

〈PtAf(X0), f ∗(X0)〉 = E[E(Af(Xt)|X0)f ∗(X0)] = E[Af(Xt)f
∗(X0)].

The inner product on the right,

〈f(X0), P ∗t A
∗f ∗(X0)〉 = 〈f(Xt), P

∗
t A
∗f ∗(Xt)〉

= E[f(Xt)E(A∗f ∗(X0)|Xt)]

= E[f(Xt)A
∗f ∗(X0)].

Hence

E[Af(Xt)f
∗(Xt−∆)− f(Xt)A

∗f ∗(Xt−∆)] = 0. (2.20)

(2.20) offer more choices of moment conditions for GMM. In particular, if f ∗ is a
constant function, (2.20) reduces to (2.19).
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Eigen GMM Consider the infinitestimal generator A of Xt. It is well known
from the spectral theory of diffusion processes that for many diffusions, the set of
eigenvalues (spectrum) Λθ for A are positive and discrete. So Λθ can be written as
(λ1, λ2, ..., λn, ...), where 0 ≤ λ1 < λ2 < ... < λn < ....

Let (λ, φ) be any eigen-pair of A. We have

Aφ = −λφ.

Then

dPtφ

dt
= lim

∆→0

Pt+∆φ− Ptφ
∆

= PtAφ = −λPtφ.

This is ordinary differential equation on Ptφ. It is well known that

Ptφ = e−λtφ.

Now apply Ito’s formula to eλtφ(Xt),

deλtφ(Xt) = λeλtφ(Xt)dt+ eλtφ′(Xt)dXt +
1

2
eλtφ′′(Xt)d[X]t

=

(
λeλtφ(Xt) + eλtφ′(Xt)µ(Xt) +

1

2
eλtφ′′(Xt)σ

2(Xt)

)
dt

+eλtφ′(Xt)σ(Xt)dWt

= eλt(λφ(Xt) + Aφ(Xt))dt+ eλtφ′(Xt)σ(Xt)dWt

= eλtφ′(Xt)σ(Xt)dWt.

Hence,

φ(Xt) = e−λtφ(X0) +

∫ t

0

e−λ(t−s)φ′(Xs)σ(Xs)dWs.

So

E(φ(Xt+∆)|Xt) = e−λ∆φ(Xt),

which leads to desired moment condition,

E
[(
φ(Xt+∆)− eλ∆φ(Xt)

)
g(Xt)

]
= 0, (2.21)

where g can be any measurable function.
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Nonparametric Estimation

The methodology of MLE and GMM presupposes correct parameterization of the
diffusion models (or equivalently the infinitestimal generator). Any misspecification
leads to inconsistency of those estimators. The problem of parameterization can be
avoided by the use of nonparametric diffusion models, the time-homogeneous version
of which is given as,

dXt = µ(Xt)dt+ σ(Xt)dWt.

Ignoring terms in (2.13) that are of smaller order than O(∆) , we obtain

E[f(Xt+∆)|Xt = x] = f(x) + Af(x)∆ +O(∆2),

where Af(x) = µ(x)f ′(x) + 1
2
σ2(x)f ′′(x). Then we have

Af(x) =
1

∆
E[(f(Xt+∆)− f(Xt))|Xt = x] +O(∆).

Let f be such that f(x) = x. Then we have

Af(x) = µ(x) =
1

∆
E[(Xt+∆ −Xt)|Xt = x] +O(∆).

Let f(x) = (x−Xt)
2. We have Af(x) = 2µ(x)(x−Xt) + σ2(x), and

σ2(x) =
1

∆
E[(Xt+∆ −Xt)

2|Xt = x] +O(∆).

We can estimate E[(Xt+∆ − Xt)|Xt = x] and E[(Xt+∆ − Xt)
2|Xt = x] using

Nadaraya-Watson kernel estimator.

µ̂(x) =

∑n
i=1K(

X(i−1)∆−x
h

)(Xi∆ −X(i−1)∆)

∆
∑n

i=1K(
X(i−1)∆−x

h
)

σ̂2(x) =

∑n
i=1K(

X(i−1)∆−x
h

)(Xi∆ −X(i−1)∆)2

∆
∑n

i=1K(
X(i−1)∆−x

h
)

.

The Nadaraya-Watson estimators are consistent. To see this, first note that

1

nh

n∑
i=1

K

(
X(i−1)∆

h

)
≈ 1

Th

∫ T

0

K

(
Xs − x
h

)
ds

=
1

Th

∫ ∞
−∞

K

(
s− x
h

)
L(T, s)ds
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=
1

T

∫ ∞
−∞

K (s)L(T, x+ hs)ds

→ 1

T

∫ ∞
−∞

K (s)L(T, x)ds

=
1

T
L(T, x),

where L(T, x) denotes the local time of Xt, and the derivation uses the Occupation
Time Formula, ∫ t

0

f(Xs)ds =

∫ ∞
−∞

f(x)L(T, x)dx.

And

1

nh

n∑
i=1

K

(
X(i−1)∆ − x

h

)(
Xi∆ −X(i−1)∆

∆

)
≈ 1

Th

∑
K

(
X(i−1)∆ − x

h

)
µ(X(i−1)∆)∆

≈ 1

Th

∫ t

0

K

(
Xs − x
h

)
µ(Xs)ds

=
1

Th

∫ ∞
−∞

K

(
s− x
h

)
µ(s)L(T, s)ds

→ 1

T
µ(x)L(T, x).

We may obtain better precision by keeping more terms in (2.13). For example,
we have

E[f(Xt+∆)|Xt = x] = f(x) + Af(x)∆ +
1

2
A2f(x)∆2 +O(∆3), (2.22)

and

E[f(Xt+2∆)|Xt = x] = f(x) + Af(x)2∆ +
1

2
A2f(x)4∆2 +O(∆3). (2.23)

4(2.22)-(2.23) would give us

Af(x) =
1

2∆
{4E[f(Xt+∆)−f(Xt)|Xt = x]−E[f(Xt+2∆)−f(Xt)|Xt = x]}+O(∆2).

More precise estimators of µ and σ2 (in the order of ∆2) then follow.
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Semiparametric Estimation

We consider stationary diffusions satisfying either

dXt = µ(Xt)dt+ σ(Xt, θ)dWt, (2.24)

or
dXt = µ(Xt, θ)dt+ σ(Xt)dWt. (2.25)

From Kolmogrov Forward Equation, we have

∂

∂∆
p(∆, x, y) = − ∂

∂y
(µ(y)p(∆, x, y))

+
1

2

∂2

∂y2
(σ2(y)p(∆, x, y)).

By stationarity, the density of marginal distribution is time-invariant, ie,

∂

∂∆
π(y) =

∂

∂∆

∫ ∞
0

p(∆, x, y)π(x)dx

=

∫ ∞
0

∂

∂∆
p(∆, x, y)π(x)dx

=

∫ ∞
0

(
− ∂

∂y
(µ(y)p(∆, x, y)) +

1

2

∂2

∂y2
(σ2(y)p(∆, x, y))

)
π(x)dx

= − ∂

∂y

(
µ(y)

(∫ ∞
0

p(∆, x, y)π(x)dx

))
+

1

2

∂2

∂y2

(
σ2(Xt+∆)

(∫ ∞
0

p(∆, x, y)π(x)dx

))
= − ∂

∂y
(µ(y)π(y)) +

1

2

∂2

∂y2

(
σ2(y)π(y)

)
= 0.

Hence
d2

x2
(σ2(x)π(x)) = 2

d

dx
(µ(x)π(x)). (2.26)

Suppose π(0) = 0, we have

µ(x) =
1

2π(x)

d

dx
(σ2(x)π(x)), (2.27)

and

σ2(x) =
2

π(x)

∫ x

0

µ(u)π(u)du. (2.28)
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For model (2.24), in which we have prior knowledge on the structure of σ2,
we may parametrically estimate σ2 and nonparametrically estimate µ using (2.27).
For model (2.25), we may similarly estimate σ2 nonparametrically using (2.28), with
prior knowledge of µ.
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Chapter 3

No-Arbitrage Pricing in
Continuous Time

3.1 Basic Setup

Consider a financial market with an interest-paying money account and a stock.

Money Account The interest rate may be fixed, time-varying, or even state-
contingent. Let M0 be the initial deposit and Mt be the cash value of the account
at time t. We may represent Mt in stochastic differential equation form as follows,

• r fixed
dMt = rM0e

rtdt = rMtdt, Mt = M0e
rt.

• r time-varying, rt

dMt = rtMtdt, Mt = M0e
∫ t
0 rsds.

• r state-contingent, r(Xt)

dMt = r(Xt)Mtdt, Mt = M0e
∫ t
0 r(Xs)ds.

Stock Let St be stock price at time t that follows an Ito process,

dSt = µ(St)dt+ σ(St)dWt.

The use of continuous diffusion process implicitly asserts that there is no “surprise”
in the market.
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One special case is when µ(St) = 0 and σ(St) = 1. St then becomes a Brownian
motion. Louis Bachelier, the pioneer of mathematical finance, used Brownian motion
in describing the fluctuation in financial markets. Another well-known special case
is the geometric Brownian motion, which is used by Black and Scholes (1973) to
price European options.

If we assume St > 0 a.s., we may also represent St in the geometric form,

dSt = µ(St)Stdt+ σ(St)StdWt.

Note that, throughout the text, we use homogeneous diffusions to model stock
prices. More generally, at the cost of technical complication, we may also use het-
erogenous diffusions.

Multivariate Case St can be a N × 1 price vector describing the prices of N
securities. Accordingly, W may be a d×1 vector of independent Brownian motions,
each of which represents a source of new information or innovation. In such case,
µ ∈ RN , σ ∈ RN×d.

Portfolio/trading strategy Portfolio or trading strategy (ht) is an adapted vec-
tor process:

ht =

(
at
bt

)
,

where at is the holding of money account, and bt the holding of stocks.

Trading Gain

Gt =

∫ t

0

bsdSs.

We usually impose the following integrability condition:∫ t

0

b2
sds <∞a.s. ∀t

If St is a martingale (e.g., BM), then we know Gt is also a martingale.

Gt =
∫ t

0
bsdSs is often called “gains process”. To see this, imagine an investor

who makes decisions in discrete time: 0 = t0 < t1 < · · · < tn = T . Let bti be the
number of stocks the investor holds over the period [ti, ti+1). Then the gains process
is described by the following stochastic difference equation:

G0 = 0, G(ti+1)−G(ti) = bti(S(ti+1)− S(ti)).
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Or in summation form,

G(ti+1) = G(0) +
i∑

j=0

btj(S(tj+1)− S(tj)).

Note that as in the definition of Ito integral, bti must be Fti-measurable, mean-
ing that the investor cannot anticipate the future (exclusion of inside trading).

Let Xt = (Mt, St)
′, and let Ht be the value of the portfolio (ht). Then

Ht = ht ·Xt = atMt + bt · St.

Definition 3.1.1 (Self-financing) (ht) is self-financing iff

dHt = ht · dXt = atdMt + bt · dSt.

Definition 3.1.2 (Arbitrage) Let (ht) be a self-financing portfolio and (Ht) be its
value, an arbitrage portfolio is one such that

H0 = 0, and HT > 0 a.s.

Lemma 3.1.3 If there is no arbitrage opportunities, and if (ht) is self-financing
and dHt = vtHtdt, then vt = rt, the risk-free short rate.

In other words, there is only one risk-free short rate.

Numeraire A numeraire is a strictly positive Ito process used for the “units” of
pricing. If there is a riskfree rate rt, the typical numeraire is the reciprocal of the
price of riskfree zero-coupon bond, Yt = M−1

t = exp(−
∫ t

0
rsds). We denote the

numeraire-deflated price process of Xt by Yt as XY , XY
t = XtYt. For example, if

Xt = (Mt, St)
′ and Yt = M−1

t , then XY
t = (1, St/Mt).

Theorem 3.1.4 (Numeraire Invariance Theorem) Suppose Y is a numeraire.
Then a trading strategy (ht) is self-financing w.r.t. X iff (ht) is self-financing w.r.t.
XY .
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Proof Let Ht = ht ·Xt, and HY
t = HtYt. If dHt = ht · dXt, then

dHY
t = YtdHt +HtdYt + d[H, Y ]t

= Ytht · dXt + (ht ·Xt)dYt + ht · d[X, Y ]t

= ht · (YtdXt +XtdYt + d[X, Y ]t)

= ht · dXY
t .

So (ht) is self-financing w.r.t. XY . The reverse is also true.

It follows that h is an arbitrage w.r.t. X iff it is an arbitrage w.r.t. XY . All this
says that renormalization of security prices by a numeraire does not have economic
effects.

3.2 The Black-Scholes Model

In a market of (Mt, St) we price an European call option using no-arbitrage argu-
ment. We specify {

dMt = rMtdt
dSt = µStdt+ σStdWt

Recall that CT = max(ST − K, 0). In general, we may use the same argument to
price any European option with the final payoff g(ST ), where g is a known function.

We assume that the option price Ct can be characterized by a function of
the underlying stock price St and time t, Ct = F (St, t). And we assume F ∈
C2,1(R × [0, T )), ie, F1 ≡ ∂F (x,t)

∂x
, F2 ≡ ∂F (x,t)

∂t
, and F11 ≡ ∂2F (x,t)

∂x2 exist and are
continuous. In the options market, F1, F2, F11 are called delta, theta, gamma,
respectively.

Using Ito’s formula, we have

dCt = F2(St, t)dt+ F1(St, t)dSt +
1

2
F11(St, t)d[S]t

= (F2(St, t) + µStF1(St, t) +
1

2
F11(St, t)σ

2S2
t )dt+ σStF1(St, t)dWt

The pricing strategy is to replicate Ct using a self-financing portfolio of Mt

and St. The price of the replication portfolio must then be the price of the option,
if no arbitrage is allowed.

We have Ht = atMt + btSt. Since ht is self-financing,

dHt = atdMt + btdSt

= atrMtdt+ bt(µStdt+ σStdWt)

= (atrMt + btµSt)dt+ σbtStdWt
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By the unique decomposition property of diffusion processes, since Ct = Ht

a.s. for all t, we have

bt = F1(St, t)

at =
F (St, t)− F1(St, t)St

Mt

,

and by the equality of drift terms between Ct and Ht,

F2(St, t) + rStF1(St, t) +
1

2
σ2S2

t F11(St, t)− rF (St, t) = 0. (3.1)

For (3.1) to hold, F must be the solution to the following partial differential equation
(PDE):

F2(x, t) + rxF1(x, t) +
1

2
σ2x2F11(x, t)− rF (x, t) = 0 (3.2)

with the boundary condition

F (x, T ) = max(x−K, 0). (3.3)

We can check that the Black-Scholes Option Pricing Formula solves the PDE
(3.2) and (3.3). The formula is as follows,

F (x, t) = xΦ(z)− exp(−r(T − t))KΦ(z − σ
√
T − t), (3.4)

with

z =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

, (3.5)

where Φ is the cdf of standard normal distribution.

A byproduct of this derivation is a popular dynamic hedging strategy called
“delta hedging”. Consider a bank that has sold an European call option and now
it wants to hedge its position. All it has to do is to maintain opposite positions of
ht = (at, bt). In fact bt = F1(St, t) is called the “delta” of the option in practice.

The General Case

Now assume that (Mt, St) are such that

dMt = rtMtdt

dSt = µ(St)dt+ σ(St)dWt
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We may mimic the argument in previous section and show that under the
no-arbitrage condition, the price process for an European call option F (St, t) must
satisfy:

F2(x, t) + rtxF1(x, t) +
1

2
σ(x)2F11(x, t)− rtF (x, t) = 0 (3.6)

with the boundary condition

F (x, T ) = max(x−K, 0).

Note that for general European option with payoff g(ST ), the price process
still satisfy (3.6) with following boundary condition

F (x, T ) = g(x). (3.7)

3.3 The Feynman-Kac Solution

Constant Riskfree Rate

Consider the following boundary value problem:

F2(x, t) + rxF1(x, t) +
1

2
σ2(x)F11(x, t)− rF (x, t) = 0, (3.8)

with
F (x, T ) = g(x).

This problem differs from (3.6) only in the form of r, which is a constant here.

Construct an Ito process Z such that Zt = x

dZs = rZsds+ σ(Zs)dWs, s > t.

By Ito’s formula,

d(e−rsF (Zs, s))

= [−re−rsF (Zs, s) + e−rsF2(Zs, s)]ds+ e−rsF1(Zs, s)dZs +
1

2
F11(Zs, s)d[Z]s

= e−rs[−rF + F2 + rZsF1 +
1

2
σ2(Zs)F11]ds+ e−rsσ(Zs)F1(Zs, s)dWs

If F (x, t) satisfies (3.8), then the term in bracket is zero. Hence e−rsF (Zs, s)
is martingale. So

e−rTF (ZT , T ) = e−rtF (Zt, t) +

∫ T

t

e−rsσ(Zs)F1(Zs, s)dWs.
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Taking conditional expectation given Zt = x gives:

E(e−rTF (ZT , T )|Zt = x) ≡ E(e−rTg(ZT )|Zt = x) = e−rtF (x, t).

Hence

F (x, t) = E(e−r(T−t)g(ZT )|Zt = x).

The message is that we can solve certain PDE’s by calculating a conditional
expectation of an imagined random variable g(ZT ).

Stochastic Riskfree Rate

Now we work to solve (3.6) which is reproduced below,

F2(x, t) + rtxF1(x, t) +
1

2
σ(x)2F11(x, t)− r(x)F (x, t) = 0

with

F (x, T ) = g(x).

It can be shown that if we construct Z such that Zt = x and

dZs = rsZsds+ σ(Zs)dWs, s > t, (3.9)

then

F (x, t) = E
{

exp

[
−
∫ T

t

rsds

]
g(ZT )|Zt = x

}
. (3.10)

In particular, the Black-Scholes option price is given by

F (x, t) = E
{
e−r(T−t)g(ZT )|Zt = x

}
, (3.11)

where Z is such that Zt = x and

dZs = rZsds+ σZsdWs, s > t. (3.12)

The expectation in the Feynman-Kac solution (3.10) is taken with respect
to objective probability on an imagined r.v. g(ZT ). We can also represent the
solution as an expectation taken with respect to an imagined probability (risk-
neutral probability) on a “real” r.v., for example, g(ST ). This will be explored in
the next section.
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Calculation of Black-Scholes Formula

Now we derive Black-Scholes formula from (3.11) and (3.12). We have

d logZs = (r − σ2/2)dt+ σdWt,

which implies

logZT − logZt = (r − σ2/2)(T − t) + σ(WT −Wt).

This is,

ZT = Zte
(r−σ2/2)(T−t)+σ(WT−Wt).

Hence

ZT |Zt=x =d xe(r−σ2/2)(T−t)+σ
√
T−tZ , Z ∼ N(0, 1).

So

F (x, t) = E
{
e−r(T−t)g(ZT )|Zt

}
= e−r(T−t)

∫ ∞
−∞

max(xe(r−σ2/2)(T−t)+σ
√
T−tz −K, 0)φ(z)dz

Some calculations yield the Black-Scholes formula in (3.4).

Feynman-Kac in Multivariate Case

Now we consider the market of a money account and multiple stocks containing d
dimensions of risk. We have

dMt = rtMtdt

dSt = µ(St)dt+ σ(St)dWt,

where Wt ∈ Rd, St ∈ RN , µ : RN × [0,∞)→ RN , σ : RN × [0,∞)→ RN×d.

The option price F (x, t) : RN × [0,∞) → R solves the following boundary
value pde:

F1(x, t)rtx+ F2(x, t) +
1

2
tr [(σσ′)(x)F11(x, t)]− rtF (x, t) = 0 (3.13)

with F (x, T ) = g(x). The solution of (3.13) is of the same form as (3.10).
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3.4 Risk-Neutral Pricing

We have shown that in the market of Mt and St such that

dMt = rtMtdt

dSt = µ(St)dt+ σ(St)dWt

The price of a general derivative can be represented as

F (x, t) = E
{

exp

[
−
∫ T

t

rsds

]
g(ZT )|Zt = x

}
,

where Z is an imagined Ito process such that Zs = x for s ≤ t and

dZs = rsZsds+ σ(Zs)dWs, s > t.

In this section we show that there exists a probability measure P̃ and a P̃-BM
W̃ such that

dSt = rtStdt+ σ(St)dW̃t.

So the price function of a general European option (CT = g(ST )) can be written as

F (x, t) = Ẽ
{

exp

[
−
∫ T

t

rsds

]
g(ST )|St = x

}
.

Put it differently,
Ct
Mt

= Ẽt
(
CT
MT

)
,

where Mt is the money account and acts as a numeraire. In other words, (Ct/Mt) is
a martingale under P̃. So P̃ is sometimes called “martingale probability measure”.
And since the price of an asset is the expectation of its payoff CT/MT taken with
respect to a probability measure, we call this measure “risk-neutral” measure or
probability.

Change of Measure

Suppose we have a probability space (Ω,F ,P) and a nonnegative r.v. ξ that satisfies
Eξ = 1, then we may define a new probability measure as follows,

P̃(A) =

∫
A

ξ(ω)dP (ω) for all A ∈ F .

We may check that P̃(A) ≥ 0 for all A ∈ F and P̃(Ω) = 1.
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If ξ > 0 a.s., then P̃ is called an “equivalent probability measure” of P, ie, for
any set A, P̃(A) = 0 iff P(A) = 0. ξ is called the Radon-Nikodym density of P̃ w.r.t.
P. In differential form, we may write

dP̃ = ξdP.

For any r.v. X, it is easy to show that

ẼX = EξX,

and that

EX = Ẽ
X

ξ
.

Example Let X be standard normal, ξ = exp(λX − λ2/2), and P̃ be defined as
above. For any function f , we have

Ẽf(X) = Eξf(X)

=

∫
exp(λx− λ2/2)

1√
2π

exp(−x2/2)f(x)dx

=
1√
2π

∫
exp(−(x− λ)2/2)f(x)dx.

So under P̃, X ∼ N(λ, 1). In other words, this particular change of measure shifts
X by a constant, without changing the variance.

Martingale Equivalent Measure

Recall that there is no arbitrage opportunity if and only if there exists a risk-neutral
probability measure P̃ such that asset prices satisfy,

pt = e−r(T−t)ẼtxT ,

where r is risk-free rate. Noting that e−r(T−t) = Mt/MT , we re-write the above
equation,

pt
Mt

= Ẽt
xT
MT

.

P̃ is said to be the martingale equivalent measure of P for the process pt/Mt, since
(pt/Mt) is a martingale under P̃.
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Obviously, if a price process Xt (e.g., pt/Mt) admits an equivalent martingale
measure, then there is no arbitrage. To see this, note that for any admissible trading
strategy, Ẽ(

∫ t
0
hsdXs) = 0. Hence, the self-financing condition htXt = h0X0 +∫ t

0
hsdXs implies

h0X0 = Ẽ0(htXt).

Thus, if htXt > 0, then h0X0 > 0.

Density Process. Let ξ > 0 a.s. and Eξ = 1 and dP̃ = ξdP. We define ξt =
E(ξ|Ft), which is called the density process for P̃ with respect to P. Obviously ξt is
a positive martingale. If Xt is Ft-measurable, then we have

E(ξtXt) = E(ξXt)

ẼXt = EξtXt

Ẽξ−1
t Xt = EXt.

The first statement is an immediate consequence of the law of iterative expectation,
and the second statement is due to

ẼXt = EξXt = E[EξXt|Ft] = E[E[ξ|Ft]Xt] = EξtXt.

The third statement is similarly established. We also have

Bayes Rule.
ẼsXt = ξ−1

s Es(ξtXt), s < t, (3.14)

where Xt is Ft-measurable and Ẽ|Xt| <∞.

Proof For any A ∈ Fs, since dP = ξ−1dP̃,

Ẽ
[
IAξ

−1
s Es(ξtXt)

]
= E [IAEs(ξtXt)]

= E [IAξtXt]

= Ẽ [IAXt]

= Ẽ
[
IAẼsXt

]
.

Since it is true for every A, the proof is complete.

As a result, we have the following lemma,

Lemma: If (Xtξt) is P-martingale, then (Xt) is P̃-martingale.
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Girsanov Theorem

Girsanov Theorem. If (Xt) is P-martingale, and (X̃t) is defined as dX̃t = dXt−
ξ−1
t d[X, ξ]t, then (X̃t) is P̃-martingale. In other words, P̃ is the martingale equivalent

measure for X̃.

Proof It suffices to show that (X̃tξt) is P-martingale.

d(X̃tξt) = X̃tdξt + ξtdX̃t + d[X̃, ξ]t

= X̃tdξt + ξtdXt.

Note that [X̃, ξ]t = [X, ξ]t, since X̃t and Xt differ only by a bounded-variation
process

∫ t
0
ξ−1
s d[X, ξ]s.

If Xt = Wt, where Wt is a Brownian motion, then dW̃t = dWt − ξ−1
t d[W, ξ]t is a

Brownian motion under P̃.

A Useful Special Case. Let ηt be adapted to Ft and let ξt = exp
(
−
∫ t

0
ηsdWs − 1

2

∫ t
0
η2
sds
)

.

If Wt is P-BM, then W̃t = Wt +
∫ t

0
ηsds is BM under P̃.

Proof Let Lt = −
∫ t

0
ηsdWs, then ξt = exp

(
Lt − 1

2
[L]t
)
. Then we have

d log ξt = d(Lt −
1

2
[L]t) = dLt −

1

2
d[L]t,

and

d log ξt = ξ−1
t dξt −

1

2

1

ξ2
t

d[ξ]t.

By unique decomposition of semimartingale, we have

dLt = ξ−1
t dξt.

Hence

ξ−1
t d[W, ξ]t = d[W,L]t = −ηtdt.

To show that W̃t is P̃-BM, we note that [W̃ ]t = t.

Note that in the above notations, ξt is called the stochastic exponential of Lt.
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Pricing of Contingent Claims

Using Girsanov Theorem, we can find the risk-neutral measure under which the
price (in numeraire) of a contingent claim is a martingale process. Suppose we have
a money account with riskfree rate rt and a contingent claim with terminal value XT

realized at time T . Then we can find probability measure P̃ under which Xt/Mt is a
martingale, where Xt is the market value of the contingent claim at time t. That is,
Ẽt(XT/MT ) = Xt/Mt, where the expectation Ẽ is taken with respect to P̃ . Hence
we have a risk-neutral pricing formula,

Xt = MtẼt
(
XT

MT

)
= Ẽt

(
exp

(
−
∫ T

t

rsds

)
XT

)
.

Example: Black-Scholes Using Girsanov We may assume a riskfree rate rt
and the stock price St satisfies:

dSt = µtStdt+ σtStdWt,

where µt and σt are adapted to Ft. Using Ito’s formula, we have

d

(
St
Mt

)
= σt

St
Mt

(
µt − rt
σt

dt+ dWt

)
.

If we define

ηt =
µt − rt
σt

Lt = −
∫ t

0

ηsdWs,

and similarly

ξt = exp

(
Lt −

1

2
[L]t

)
and P̃ such that dP̃ = ξdP.

Then we have

d

(
St
Mt

)
= σt

St
Mt

dW̃t.

Or equivalently,
dSt = rtStdt+ σtStdW̃t.

Then the price of an European call option would be

Ct = Ẽ
{

exp

(
−
∫ T

t

rsds

)
max(ST −K, 0)|Ft

}
= MtẼ

{
CT
MT

|Ft
}
,

53



where Ẽ is taken with respect to P̃.

Note that the process ηt satisfies

µt − rt = ηtσt.

ηt measures the excess return per unit of risk the market offers. For this reason ηt
is called the “market price of risk” process.

Example: Forwards and Futures A forward contract is an agreement to pay
a specified delivery price K for an asset at a delivery date T . Suppose the asset
price process is St. At time T , the value of the contract is ST −K. At the time of
reaching an agreement, say t, the value of the contract must be zero,

MtẼt
(
ST −K
MT

)
= Ẽt exp

(
−
∫ T

t

rsds

)
(ST −K) = St − P (t, T )K = 0,

where P (t, T ) = Ẽt
(

exp
(
−
∫ T
t
rsds

))
. Thus we obtain the forward price,

K = St/P (t, T ).

Note that the forward price is a function of both t and T .

After a forward contract is signed on t, the value of this agreement will most
likely diverge from zero, often substantially. Let u be such that t < u < T . For the
party with the long position, who receives ST and pays St/P (t, T ) at time T , the
value of the agreement at time u is

MuẼu
(
M−1

T

(
ST −

St
P (t, T )

))
= Su − St

P (u, T )

P (t, T )
.

If the riskfree rate is a constant r, then it becomes Su − exp(r(u− t))St.
If the asset price rises more rapidly than the money account, then the long

(short) position has a positive (negative) value. If the growth rate is less than
the riskfree rate, then the long (short) position has a negative (positive) value.
Whichever happens, one party will have an incentive to default.

A futures contract alleviates the risk of default by margin requirement (initial
margin, marking to margin) and by trading in an exchange market. Suppose the
spot price process of an underlying asset is St and let F (t, T ) denote the futures
price process of a contract that matures at T . We have F (T, T ) = ST .

F (t, T ) must be a martingale process under the risk-neutral measure P̃. To see
this, consider a partition of the life span of a futures contract, t = t0 < t1 < · · · <
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tn = T . Each interval [tk, tk+1) represents a “day”. A long position in the futures
contract is an agreement to receive as a cash flow the changes in the futures price,
F (tk+1, T )−F (tk, T ), during the time the position is held. A short position receives
the opposite. Suppose that the riskfree rate is constant within each day and that it
is determined in the previous day. Then Mtk+1

is Ftk-measurable, since

Mtk+1
= exp

(
−
∫ tk+1

0

rsds

)
= exp

(
−

k∑
k=0

rtk(tk+1 − tk)

)
.

In equilibrium, any future cash flow must have a zero current value. That is, for all
k,

MtkẼ
(
M−1

tk+1
(F (tk+1, T )− F (tk, T )) |Ftk

)
= 0.

Since Mtk+1
is Ftk-measurable, we have

Mtk

Mtk+1

Ẽ (F (tk+1, T )− F (tk, T )|Ftk) = 0.

Hence F (tk, T ) must be a martingale sequence. And obviously, F (tn−1, T ) = Ẽtn−1ST ,

F (tn−2, T ) = Ẽtn−2F (tn−1, T ), and so on. By the law of iterative expectation, we
have

F (t, T ) = Ẽ(ST |Ft).

Forwards-Futures Spread The difference between forward and futures prices,

Dt = St/P (t, T )− Ẽ(ST |Ft),

is called the forward-futures spread. It is obvious that Dt → 0 as t→ T .

Since St = Ẽt
(
Mt

MT
ST

)
and P (t, T ) = Ẽt Mt

MT
, we have

Dt =
1

P (t, T )

(
Ẽt
(
Mt

MT

ST

)
− Ẽt

Mt

MT

ẼtST
)

=
1

P (t, T )
c̃ov

(
Mt

MT

, ST |Ft
)
.

If rt is a constant, Dt = 0. If P (t, T ) is positively correlated with ST , which means
that a higher ST goes together with a lower interest rate, then the forward price is
higher than the futures price.
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Example: Pricing of Cash Flow Suppose an asset pays Dt between time 0 and
t. Then a long position of the asset gives us a gain process that satisfies

dGt = dDt + rtGtdt,

or

d(Gt/Mt) = 1/MtdDt.

The risk-neutral price at time t of the cash flow between t and T is thus,

MtẼt(GT/MT ) = MtẼt
(∫ T

t

1/MsdDs

)
.

The cash flow may be negative, in which case Dt is decreasing. The cash flow
is most likely discrete, ie,

Dt =
n∑
i=1

diI[0,t](ti),

where 0 < t1 < t2 < · · · < tn ≤ T and di is random payment at time ti. In this case,
the risk neutral price at time t is given by

n∑
i=1

I[t,T ](ti)
(
MtẼt(Mtidi)

)
.

If di is deterministic, then the above formula reduces to the pricing formula for bond
with fixed coupons.

The Multivariate Case

We first state the multivariate Girsanov theorem. It follows easily from the general
Girsanov theorem.

Multivariate Girsanov Let ηt ∈ Rd be adapted to Ft and let

ξt = exp

(
−
∫ t

0

ηs · dWs −
1

2

∫ t

0

‖ηs‖2ds

)
. (3.15)

If Wt is P-BM, then W̃t = Wt +
∫ t

0
ηsds is BM under P̃.

We consider a stock market of N stocks. Let St = (S1
t , ..., S

N
t ) be the stock

prices and let Wt = (W 1
t , ...,W

d
t ) be a d-dimensional independent Brownian Motions.
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Assume that for each stock,

dSit = µitS
i
tdt+ Sit

d∑
j=1

σijt dW
j
t ,

= µitS
i
tdt+ Sitσ

i
t · dWt, i = 1, ..., N,

where σit = (σi1t , ..., σ
Nd
t ).

If we find an adapted process (ηt) such that

µit − rt = ηt · σit, i = 1, ..., N, (3.16)

we may define ξ as in (3.15) and define accordingly P̃ such that W̃t = Wt +
∫ t

0
ηsds

is BM under P̃. Hence

dSit = rtS
i
tdt+ Sitσ

i
t · dW̃t, i = 1, ..., N.

Or

d

(
Sit
Mt

)
=

(
Sit
Mt

)
σit · dW̃t.

In other words, each numeraire-denominated stock price is a martingale under P̃.

We restate the crucial condition in (3.16) in matrix form. Let µt = (µ1
t , ..., µ

N
t )′,

we have
σtηt = µt − rt. (3.17)

Recall that (ηt) is called the “market-price-of-risk” (MPR) process and measures
the drift in price the investor get compensated for taking each unit of risk.

When the equation (3.17) has no solution, martingale equivalent measure for
this market does not exist. In this case, it is always possible to find arbitrage
strategies. This says that no arbitrage implies the existence of the “market-price-
of-risk” process, hence the existence of martingale equivalent measure.

When N > d, some of the securities are “redundant” (derivatives, for example)
and can be replicated by a linear combination of other stocks. Thus we may assume
N = d. If rank(σ) = d, there is at most one MPR process, and accordingly, an
equivalent martingale measure. The market is said to be complete.

Market Completeness LetM = {hT ·XT |(ht)is self-financing}. IfM = L2, the
space of all finite-variance random variables, we say the market is complete.

A necessary and sufficient condition for complete market is that there is an MPR
process and rank(σt) = d. In other words, there exists a unique MPR process.

57



Hedging a General Contingent Claim

We first state an important theorem.

Theorem 3.4.1 (Martingale Representation Theorem) Let W = (W 1,W 2, ...,W d),
and Ft be the natural filtration of W . If (Mt) is a martingale w.r.t. Ft, then there
exists K = (K1, K2, ..., Kd) such that

∫ t
0
(Kj

s)
2ds <∞ for each j and

Mt = M0 +

∫ t

0

Ks · dWs.

Given a FT -measurable contingent claim CT , the no arbitrage price at time t
satisfies,

Ct
Mt

= Ẽ
(
CT
MT

|Ft
)
.

The process of (Ct/Mt,Ft) is a P̃ martingale. By martingale representation theorem,
we can find an adapted process (γt) such that

Ct
Mt

= C(0) +

∫ t

0

γsdW̃s.

Let the value of the hedging portfolio be Ht. Suppose we hold ∆t amount of stock
at time t, we have

dHt = ∆tdSt + rt(Ht −∆tSt)dt

= rtHtdt+ ∆tσtSt(ηtdt+ dWt),

where ηt is the market price of risk process. Hence

d

(
Ht

Mt

)
= ∆tσtSt(ηtdt+ dWt) = ∆tσtStM

−1
t dW̃t.

So we have (
Ht

Mt

)
= H0 +

∫ t

0

∆vσvSvM
−1
v dW̃v.

To hedge Ct, we must have H0 = C0 and

∆t =
Mt

σtSt
γt.
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From Risk Neutral Pricing to PDE

Consider the Black-Scholes Model,

dMt = rtMtdt

dSt = µtStdt+ σtStdWt

The MPR η exists,

ηt =
µt − rt
σt

.

And σ is trivially full rank. Hence the market is complete.

Since ST ∈ L2 , CT = max(ST − K, 0) ∈ L2. We know that M−1
t Ct =

ẼtM−1
T CT . Let F (St, t) = Ct, we have

d

(
F (St, t)

Mt

)
=

1

Mt

(−rtF (St, t)dt+ dF (St, t))

=
1

Mt

(F2 + rtStF1 +
1

2
F11σ

2
tS

2
t − rtF )dt+

St
Mt

σtF1dW̃t.

The bounded variation part gives the PDE. And the martingale part gives the
hedging strategy, which is

∆t = F1(St, t).

A complete market admits only one martingale equivalent measure, in which case
Ct is unique.

3.5 State Prices

Definition

A state-price deflator is a deflator m for a price process X such that Xm is a
martingale w.r.t. the natural filtration.

Other names for m are stochastic discount factor, state-price density, marginal
rates of substitution, and pricing kernel.

Given a numeraire Mt and an equivalent martingale measure ξ, the state-price
deflator is

mt =
ξt
Mt

To see this,

EsmtXt = Esξt
Xt

Mt

= ξsẼs
Xt

Mt

= ξs
Xs

Ms

= msXs.
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Conversely, given mt, we can construct ξt by

ξt = Mtmt.

Risk Premium

mt is an Ito process, hence it can be characterized by

dmt = mtµm,tdt+mt(σm,t · dWt).

Since

dmt = d

(
ξt
Mt

)
= −rtmtdt+M−1

t dξt,

So
µm,t = −rt.

Let a price process be Sit ,

dSit = Sitµ
i
tdt+ Sit(σ

i
t · dWt).

We have

d(mtS
i
t) = mtdS

i
t + Sitdmt + d[m,Si]t

= mtS
i
t(µ

i
t + µm,t + σm,t · σit)dt+mtS

i
t(σm,t + σit) · dWt.

(mtSt) is a martingale, so

µit + µm,t + σm,t · σit = 0.

Hence,
µit − rt = −σit · σm,t, (3.18)

where both σt and σm,t can be negative. (3.18) characterizes the excess expected
return or risk premium of the stock Si.

Furthermore, if we define

βit = − σit · σm,t
σm,t · σm,t

and λm,t = σm,t · σm,t ≡ ‖σm,t‖2,

then we have
µit = rt + βitλm,t.

βit measures the systematic risk in Sit , and λm,t measures the price of the systematic
risk. Note that ηt = −σm,t, since

ηt · σit = µit − rt = −σm,t · σit for all t.

So
λm,t = ‖ηt‖2.
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3.6 Treatment of Dividends

We discuss how to treat dividend payment in risk-neutral pricing framework.

Continuous Payment

We assume that if a stock withholds dividends, the stock price follows a diffusion
process,

dSt = µtStdt+ σtStdWt.

Now, we may assume that the stock pays dividends continuously at a rate of
dt. Then

dSt = µtStdt+ σtStdWt − dtStdt.

To replicate the price process of a contingent claim, (Ct, t ∈ [0, T ]), we con-
struct a self-financing portfolio ht which holds ∆t stocks at time t. Let Ht be the
value of the portfolio and let Dt denote the dividends paid cumulatively up to time
t and satisfies

dDt = dtStdt.

Then we have

dHt = ∆tdSt + ∆tdDt + rt(Ht −∆tSt)dt

= rtHtdt+ ∆tSt(µt − rt)dt+ ∆tStσtdWt

= rtHtdt+ σt∆tSt(ηtdt+ dWt),

where

ηt =
µt − rt
σt

is the MPR process. Define dW̃t = dWt + ηtdt. Under P̃, density process of which
is defined as the exponential martingale of Lt = −

∫ t
0
ηsdWs, we have

dHt = rtHtdt+ σt∆tStdW̃t.

In other words, under P̃, the numeraire-deflated process Ht/Mt is a martingale,

d

(
Ht

Mt

)
= σt∆tSt/MtdW̃t.

Hence the price of the contingent claim would be given by

Ct = MtẼt
CT
MT

.
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It can be shown that under P̃, the stock price follows

dSt = (rt − dt)Stdt+ σtStdW̃t.

Now let dt = d, rt = r, and σt = σ, we have

ST = S0 exp

[
(r − d− 1

2
σ2)T + σW̃T

]
.

From this we can easily calculate Black-Scholes Formula with continuous dividend
yield d.

A Different Perspective

Obviously, if we reinvest the dividends, the “gain process” of the stock follows

dGt = µtGtdt+ σtGtdWt.

Consider the market that consists of the stock with dividend reinvestment and
a money account, Xt = (Gt,Mt). This market admits no arbitrage if and only
if Xt/Mt admits an equivalent martingale measure, say, P̃. Then the price of a
contingent claim (Ct, t ∈ [0, T ]) in the unit of a numeraire should be a martingale
under P̃.

To find such a probability measure, we obtain

d

(
Gt

Mt

)
= (µt − rt)Gt/Mtdt+ σtGt/MtdWt = σtGt/Mt

(
µt − rt
σt

+ dWt

)
.

Define W̃t = Wt +
∫ t

0
ηsds, ηt = (µt − rt)/σt, Lt = −

∫ t
0
ηsdWs, and ξt = exp(Lt −

[L]t/2), which corresponds to an equivalent probability measure P̃. According to
Girsanov theorem, W̃t ∼ P̃-Brownian Motion. Then Gt/Mt is P̃-martingale.

Discrete Payment

Suppose the dividends are paid at n time points on [0, T ], 0 < t1 < t2 < ... < tn < T .
At each time point ti, the dividend payment is diS(ti−), where di is Fti-measurable
and S(ti−) denotes the stock price just prior to the payment. The stock price after
the payment is

Sti = Sti− − diSti− = (1− di)Sti−.
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We assume that between dividend payment dates the stock price follows,

dSt = µtStdt+ σtStdWt, ti ≤ t < ti+1.

Hence, for time t ∈ [ti, ti+1), the value of hedging portfolio Ht follows

dHt = ∆tdSt + (Ht −∆tSt)dMt

= rtHtdt+ ∆tSt(µt − rt)dt+ ∆tStσtdWt

= rtHtdt+ σt∆tSt(ηtdt+ dWt),

where

ηt =
µt − rt
σt

.

Since the portfolio collects the dividend payment, the portfolio value does not jump
at payment dates. Hence the above SDE describes the portfolio value for all t.

We may define dW̃t = dWt + ηtdt and define P̃ as usual. Then Ht/Mt would
be martingale under P̃ for all t. And

dSt = rtStdt+ σtStd̃Wt, t ∈ [ti, ti+1), i = 0, ..., n.

Now let rt = r and σt = σ, we have

Sti+1− = Si exp

[
(r − 1

2
σ2)(ti+1 − ti) + σ(W̃ti+1

− W̃ti)

]
,

and

Sti+1
= (1− di+1)Si exp

[
(r − 1

2
σ2)(ti+1 − ti) + σ(W̃ti+1

− W̃ti)

]
.

Then we have

ST =

(
S0

n−1∏
i=0

(1− di+1)

)
· exp

[
(r − 1

2
σ2)T + σW̃T

]
.

It is easy to see that we can use the Black-Scholes formula to calculate the price
of European call options on the stock St, with initial value being replaced by(
S0

∏n−1
i=0 (1− di+1)

)
.
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Chapter 4

Term Structure Modeling

4.1 Basics

We study the price of money, i.e., the default-free interest rate. (Think of the interest
rate on bills/notes/bonds issued by the US treasury.) This differs from the price of
a particular bond in that the latter depends on factors other than the time value
of money, such as the credit history of the borrower, the liquidity condition of the
market, and so on.

Term Structure

We assume that a continuum of default-free discount bonds trade continuously at
time t with differing maturities T and prices P (t, T ). Assume P (T, T ) = 1. P (t, T )
is called the term structure.

P (t, T ) can be read along two dimensions:

1. Fix t and let T vary: prices for different maturities at time t.

2. Fix T and let t vary: historical price series of a particular maturity T .

Yield Curve

The interest rate implied by the zero-coupon bond is called spot rate, which is given
by

R(t, T ) = − logP (t, T )

T − t
.
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Fixing a t and varying T , we call R(t, T ) the yield curve. Yield curves can be
increasing or decreasing functions of T . In practice, yields to maturity on coupon
bonds are often calculated. The yield to maturity is the internal rate of return
for a coupon bond, or, the constant interest rate that makes the present value of
future cash flow (coupon payments and the face value) equal to the market price
of the bond. Suppose the coupon bond in question pays a series of coupons in
the remaining period (ci at t < ti ≤ T , including the principal), then the yield to
maturity (YTM), y(r, T ), solves the following equation,

Pc(t, T ) =
∑
ti>t

ci exp(−(ti − t)y(t, T )), (4.1)

where Pc(t, T ) is the market price of the coupon bond. Obviously YTM is not only
a function of T , but also how coupons are paid (annual, biannual, or quarterly). For
coupon bonds, the duration of a coupon bond is defined as:

Dt =

∑
ti>t

(ti − t)ci exp(−(ti − t)y(t, T ))∑
ti>t

ci exp(−(ti − t)y(t, T ))
.

The duration Dt thus defined is in fact the derivative of − logPc(t, T ) with respect to
y(t, T ). Intuitively, that is the percentage decline of the bond price associated with
a unit increase in YTM. For example, the price of a 5-year-duration bond declines
5% when its YTM increases by 1%. For discount bonds, duration is exactly the
term to maturity (TTM), that is (T − t). Duration may be understood as a measure
of risk for coupon bonds.

Short Rate

The short rate, or the instantaneous rate, measures the current cost of short-term
borrowing.

rt = lim
∆→0

R(t, t+ ∆) = − lim
∆→0

log(P (t, t+ ∆))

∆
.

Or,

rt = R(t, t), and

rt = − ∂

∂T
logP (t, t)

Forward Rate

Let t < T1 < T2. Consider a forward contract on a bond that matures at T2: an
agreement at time t to make a payment at T1 and receive a payment in return at
T2.
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We can replicate the contract, at time t, by

• buying a T2 bond

• selling k units of T1 bond.

The cash flow of this portfolio is

• At t, −P (t, T2) + kP (t, T1)

• At T1, -k

• At T2, 1

Since the value of any forward contract should be zero at the time of agreement t,
k must satisfies

k =
P (t, T2)

P (t, T1)
.

Obviously, k should be called the forward price of the T2-bond. The corresponding
yield of holding the T2-bond in the interval of [T1, T2], denoted as F (t, T1, T2), is

F (t, T1, T2) =
log 1/k

T2 − T1

= − logP (t, T2)− logP (t, T1)

T2 − T1

.

Now it is ready to define forward rate, the forward price for instantaneous
borrowing at time T ,

f(t, T ) = lim
T2→T

F (t, T, T2) = lim
∆→0
− logP (t, T + ∆)− logP (t, T )

∆
= − ∂

∂T
logP (t, T ).

The forward rate f(t, T ) contains all information about P (t, T ) and R(t, T ). Specif-
ically, we have

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
,

and

R(t, T ) =

∫ T
t
f(t, u)du

T − t
.

And the short rate rt can be recovered using

rt = f(t, t).
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We also have

∂R(t, T )

∂T
= −∂ logP (t, T )

∂T

1

T − t
+

logP (t, T )

(T − t)2

=
f(t, T )

T − t
− 1

T − t
R(t, T ).

Hence

f(t, T ) = R(t, T ) + (T − t)∂R(t, T )

∂T
.

When T = t, f(t, t) = R(t, t) = rt. Otherwise, f(t, T ) is greater (less) than R(t, T )
when R(t, T ) is increasing (decreasing). Finally, we have

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, s)ds.

4.2 The Single-Factor Heath-Jarrow-Morton Model

The Risk-Neutral Pricing

The Model P (t, T ), R(t, T ), and f(t, T ) contain the same information. The HJM
model (Heath, Jarrow, and Morton, 1992) is a model on f(t, T ):

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dWs. (4.2)

Or, in its differential form,

dtf(t, T ) = α(t, T )dt+ σ(t, T )dWt.

• α(t, T ) and σ(t, T ) may depend on (Ws, s ≤ t) and f(t, T ) itself.

• f(0, T ) is deterministic.

•
∫ T

0

∫ u
0
|α(t, u)|dtdu <∞ and E

(∫ T
0

∣∣∫ u
0
σ(t, u)dWt

∣∣ du) <∞.

The Numeraire We use Mt, which satisfies

M0 = 1, and dMt = rtMtdt.

Or

Mt = exp

(∫ t

0

rsds

)
.
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Recall that rt = f(t, t). So

rt = f(0, t) +

∫ t

0

α(s, t)ds+

∫ t

0

σ(s, t)dWs.

So

Mt = exp

(∫ t

0

f(0, s)ds+

∫ t

0

∫ u

0

α(s, u)dsdu+

∫ t

0

∫ u

0

σ(s, u)dWsdu

)
= exp

(∫ t

0

f(0, s)ds+

∫ t

0

∫ t

s

α(s, u)duds+

∫ t

0

∫ t

s

σ(s, u)dudWs

)
.

The Bond We can choose any bond price to construct martingale equivalent
measure under no arbitrage condition. Consider P (t, T ),

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
= exp

(
−
[∫ T

t

f(0, u)du+

∫ t

0

∫ T

t

α(s, u)duds+

∫ t

0

∫ T

t

σ(s, u)dudWs

])

We can check that P (0, T ) = exp
(
−
∫ T

0
f(0, u)du

)
, and P (T, T ) = 1.

Deflation Define

Z(t, T ) = M−1
t P (t, T )

= exp

[
−
∫ T

0

f(0, u)du−
∫ t

0

∫ T

s

α(s, u)duds−
∫ t

0

(∫ T

s

σ(s, u)du

)
dWs

]
= exp

[
−
∫ T

0

f(0, u)du−
∫ t

0

∫ T

s

α(s, u)duds+

∫ t

0

Σ(s, T )dWs

]
,

where Σ(t, T ) = −
∫ T
t
σ(t, u)du. Let Xt be the term in the bracket,

dtZ(t, T ) = d(exp(Xt))

= exp(Xt)dXt +
1

2
exp(Xt)d[X]t

= Z(t, T )

((
1

2
Σ(t, T )2 −

∫ T

t

α(t, u)du

)
dt+ Σ(t, T )dWt

)
.
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Change of Measure Then the market-price-of-risk process would be

ηt =
1
2
Σ2(t, T )−

∫ T
t
α(t, u)du

Σ(t, T )

=
1

2
Σ(t, T )− Σ−1

∫ T

t

α(t, u)du.

Then we can define P̃ and a W̃t such that

dW̃t = dWt + ηtdt.

Then
dtZ(t, T ) = Z(t, T )Σ(t, T )dW̃t. (4.3)

Hence Z(t, T ) is a P̃-martingale. And under P̃, the bond price P (t, T ) has a drift
term rt:

dtP (t, T ) = P (t, T )(rtdt+ Σ(t, T )dW̃t).

Other Bonds We use P (t, T ) to construct a martingale equivalent measure P̃.
What about other bonds, such as P (t, S), S < T?

Let X = 1 be a claim that pays off at time S. Then P (t, S) is the price of X
at time t,

P (t, S) = MtẼt(M−1
S ) = Ẽt

(
exp

(
−
∫ S

t

rsds

))
.

And the deflated price process is

Z(t, S) = M−1
t P (t, S) = Ẽt(M−1

S ).

So the deflated prices of all other bonds are P̃-martingale. This means that their
P̃-drifts are restricted such that ηt is the same market-price-of-risk process for all
bonds. In particular, for all S ∈ [0, T ],∫ S

t

α(t, s)ds =
1

2
Σ2(t, S)− Σ(t, S)ηt.

Taking ∂/∂S on both sides,

α(t, S) = −Σ(t, S)σ(t, S) + σ(t, S)ηt

= σ(t, S)(ηt − Σ(t, S)).

If there exists an (ηt) such that the above holds, among other regularity con-
ditions, then the market is complete. We may find a self-financing portfolio of
(Mt, P (t, T )), that replicates any contingent claim US which pays off at time S < T .
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A Direct Approach

We have

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )(dW̃s − ηsds)

= f(0, T ) +

∫ t

0

(α(s, T )− σ(s, T )ηs)dt+

∫ t

0

σ(s, T )dW̃s

= f(0, T ) +

∫ t

0

(−Σ(s, T )σ(s, T ))dt+

∫ t

0

σ(s, T )dW̃s.

So as in Duffie (2001), we may directly assume no arbitrage opportunities and there
exists a martingale equivalent measure P̃ such that we may specify f(t, T ) as

f(t, T ) = f(0, T ) +

∫ t

0

µ(s, T )ds+

∫ t

0

σ(s, T )dW̃s,

where

µ(t, T ) = −σ(t, T )Σ(t, T )

= σ(t, T )

∫ T

t

σ(t, s)ds.

Then

rt = f(0, t) +

∫ t

0

σ(s, t)

∫ t

s

σ(s, u)duds+

∫ t

0

σ(s, T )dW̃s.

4.3 Short-Rate Models

The short-rate model is a model on rt. Assume there exists a martingale equivalent
measure P̃. rt is usually specified as a Markov diffusion:

drt = ν(rt)dt+ ρ(rt)dW̃t. (4.4)

Then the term structure P (t, T ) is given as

P (t, T ) = Ẽt
(

exp(−
∫ T

t

rsds)

)
.

Note that the short rate process alone does not recover the term structure, which
is determined by the risk appetite of the market as well as the future short-term
borrowing cost.
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Connection with Forward-Rate Models

Given f(t, T ), we can easily recover rt. And we may recover the forward rate f(t, T )
from the short rate rt as follows. We define g(x, t, T ) as

g(x, t, T ) = − log

[
Ẽ
(

exp

(
−
∫ T

t

rsds

)
| rt = x

)]
Then we have

g(rt, t, T ) = − logP (t, T ) =

∫ T

t

f(t, u)du.

In other words,

f(t, T ) =
∂

∂T
g(rt, t, T ).

Hence,

dtf(t, T ) =
∂2g

∂T∂t
dt+

∂2g

∂T∂x
drt +

1

2

∂3g

∂T∂x2
d[r]t

=

(
∂2g

∂T∂t
ν(rt) +

∂2g

∂T∂t
+

1

2

∂3g

∂T∂x2
ρ2(rt)

)
dt+

∂2g

∂x∂T
ρ(rt)dW̃t.

So

σ(t, T ) =
∂2g(rt, t, T )

∂T∂x
ρ(rt)

Σ(t, T ) = −∂g(rt, t, T )

∂x
ρ(rt).

Note also that

f(0, T ) =
∂g(r0, 0, T )

∂T
.

f(0, T ) together with σ(t, T ) determines f(t, T ) under P̃.

Examples

Ho and Lee Model The short rate process rt satisfies

drt = νtdt+ ρdW̃t, (4.5)

where νt is deterministic and bounded and ρ is constant.

For s ≥ t,

rs = rt +

∫ s

t

νudu+

∫ s

t

ρdW̃u.
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Hence ∫ T

t

rsds = rt(T − t) +

∫ T

t

∫ s

t

νududs+

∫ T

t

∫ s

t

ρdW̃uds

= rt(T − t) +

∫ T

t

∫ T

u

νudsdu+

∫ T

t

∫ T

u

ρdsdW̃u

= rt(T − t) +

∫ T

t

νu(T − t)du+

∫ T

t

ρ(T − u)dW̃u

Let MT = −
∫ T
t
ρ(T − u)dW̃u. MT is a P̃-martingale and Mt = 0. We have

[M ]T = ρ2

∫ T

t

(T − u)2du.

Then exp(MT − 1
2
[M ]T ) is a (positive) P̃-martingale with exp(Mt − 1

2
[M ]t) = 1.

Hence

Ẽt exp(MT ) = exp

(
1

2
[M ]T

)
Ẽt exp

(
MT −

1

2
[M ]T

)
= exp

(
1

2
[M ]T

)
exp(Mt −

1

2
[M ]t)

= exp

(
1

2
ρ2

∫ T

t

(T − u)2du

)
.

We have

exp

(
−
∫ T

t

rsds

)
= exp (−rt(T − t)) exp

(
−
∫ T

t

νu(T − u)du

)
exp (MT )

Hence
Ẽ
[
e−

∫ T
t rsds|rt = x

]
= e−x(T−t) · e−

∫ T
t νu(T−u)du · e

1
2
ρ2

∫ T
t (T−u)2du.

Hence

g(x, t, T ) = − log
(
Ẽ
(
e−

∫ T
t rsds|rt = x

))
= x(T − t) +

∫ T

t

νu(T − u)du− 1

2
ρ2

∫ T

t

(T − u)2du

= x(T − t) +

∫ T

t

νu(T − u)du− 1

6
ρ2(T − t)3.

The HJM volatility σ(t, T ) is then

σ(t, T ) = ρ
∂2g(rt, t, T )

∂x∂T
= ρ,
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which does not depend on t or T .

And Σ(t, T ) is
Σ(t, T ) = −ρ(T − t).

So Ho and Lee model is equivalent to the following HJM model:

dtf(t, T ) = ρ2(T − t)dt+ ρdW̃t,

with

f(0, T ) =
∂g(r0, 0, T )

∂T
= r0 −

1

2
ρ2T 2 +

∫ T

0

νsds

.

We may easily generalize (4.5) as follows,

drt = νtdt+ ρtdW̃t.

The HJM counterpart would be

dtf(t, T ) = ρ2
t (T − t)dt+ ρtdW̃t,

with

f(0, T ) = r0 −
∫ T

t

ρ2
s(T − s)ds+

∫ T

0

νsds.

Now the HJM volatility depends on time t.

Vasicek Model Now we allow the drift depend on rt itself,

drt = (θ − αrt)dt+ ρdW̃t, (4.6)

where θ, α, and ρ are constants. The process described by (4.6) is the well-known
Orstein-Uhlenbeck process. This model translates into a HJM model with volatility
that depends on maturity T as well as time t.

Exercise: Show that the HJM representation of the Vasicek model is

σ(t, T ) = ρ exp(−α(T − t)),

with

f(0, T ) = θ/α + e−αT (r0 − θ/α)− ρ2

2α2
(1− e−αT )2.

We may generalize (4.6) into the following form,

drt = (θt − αtrt)dt+ ρtdW̃t,

where θt, αt, and ρt are deterministic processes.
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Cox-Ingersoll-Ross Model Both Ho and Lee model and Vasicek model may
display negative short rates. The Cox-Ingersoll-Ross model avoids this problem.

drt = (θ − αrt)dt+ ρ
√
rtdW̃t, (4.7)

where θ, α, and ρ are constants. If θ ≥ ρ2/2, rt is positive a.s. The process described
by (4.7) is the Feller’s Square Root Process. We may easily generalize the CIR model
to allow deterministic processes θt, αt and ρt in place of the corresponding constants.

The HJM equivalent model needs a special function B(t, T ) which is the solu-
tion to the Riccati differential equation

∂B(t, T )

∂t
− αB(t, T )− 1

2
ρ2B2(t, T ) + 1 = 0, with B(T, T ) = 0.

Then we have

g(x, t, T ) = xB(t, T ) + θ

∫ T

t

B(s, T )ds.

Define D(t, T ) = ∂B/∂T . Then the HJM volatility can be written as

σ(t, T ) = ρ
√
rtD(t, T )

Σ(t, T ) = −ρ
√
rtB(t, T ).

The initial value can also be easily calculated,

f(0, T ) = r0D(0, T ) + θ

∫ T

0

D(s, T )ds.

Black-Karasinski Model The Black-Karasinski model forces the short rate to
be positive by taking exponential of an Orstein-Uhlenbeck process:

rt = exp(Xt), (4.8)

where

dXt = (θt − αtXt)dt+ ρtdW̃t.

Using Ito’s formula, we may write the Black-Karasinski Model as

drt =

(
(θt − αt log rt)rt +

1

2
ρ2
t rt

)
dt+ ρtrtdW̃t.

75



The General Parametric Model In general, we may write the short rate model
in the following form,

drt = [c0(t) + c1(t)rt + c2(t)rt log rt] dt+ [d0(t) + d1(t)rt]
v dW̃t (4.9)

Here are some special cases.

• c2 = 0, d0 = 0, v = 0.5, CIR

• c1 = 0, c2 = 0, d1 = 0, v = 1, Ho and Lee

• c2 = 0, d1 = 0, v = 1, Vasicek

• d0 = 0, v = 1, Black-Karasinski

In particular, c1 is usually called “mean-reversion” parameter.

If c0 = d1 = 0, rt is Gaussian. It can be shown that g(x, t, T ) satisfies

g(x, t, T ) = A(t, T ) +B(t, T )x.

Affine Models

When g(x, t, T ) is affine in x, ie,

g(x, t, T ) = A(t, T ) +B(t, T )x,

then we call the associated term structure model an affine term structure model.

The term structure is affine if and only if ν and ρ2 in the definition of short-rate
models (4.4) is affine, ie,

ν(rt) = c0(t) + c1(t)rt

ρ2(rt) = d0(t) + d1(t)rt.

Given ν and ρ, we may recover A and B. First, B satisfies the following Riccati
equation,

∂B(t, T )

∂t
+ c1(t)B(t, T )− 1

2
d1(t)B2(t, T ) + 1 = 0, with B(T, T ) = 0.

And

A =

∫ T

t

(
c0(s)B(s, T )− 1

2
d0(s)B2(s, T )

)
ds.

In particular, Gaussian models and the CIR model have explicit solution. Others
may be solved numerically.
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The Feynman-Kac Formulation

In a single-factor model, the evolution of short rate depends on one factor only. To
emphasize this point, we may write the short rate model in (4.4) as

rt = Xt, and dXt = ν(Xt)dt+ ρ(Xt)dW̃t. (4.10)

We will see that this formulation extends easily to multi-factor models.

By the Markovian nature of rt, P (t, T ) can be represented as P (t, T ) = F (rt, t).
Recall that

F (x, t) = Ẽt
[
exp

(
−
∫ T

t

rsds

)
|Xt = x

]
= Ẽt

[
exp

(
−
∫ T

t

rsds

)
|rt = x

]
.

It is clear that F solves the following partial differential equation,

F2(x, t) + ν(x)F1(x, t) +
1

2
ρ2(x)F11(x, t)− xF (x, t) = 0 (4.11)

with
F (x, T ) = 1.

We can thus solve the above pde numerically for F (x, t), and thus P (t, T ).

4.4 Multi-factor Models

Now we assume the economy is subject to more than one “shocks”. Let W =
(W 1, ...,W d)′ be a d-dimensional Brownian Motion.

Multi-factor Heath-Jarrow-Morton Model

Let σ = (σ1, ..., σd)
′, we can specify the forward rate as

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T ) · dWs

= f(0, T ) +

∫ t

0

α(s, T )ds+
d∑
i=1

∫ t

0

σi(s, T )dW i
s .

In differential form,

dtf(t, T ) = α(t, T )dt+ σ(t, T ) · dWt.
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For example, we may have

dtf(t, T ) = α(t, T )dt+ σ1dW
1
t + σ2e

−κ(T−t)dW 2
t ,

where σ1, σ2, and κ are constants. In this model, W 1 provides “shocks” that are
felt equally by all points on the yield curve and W 2 “shocks” that are felt only in
the short term.

For a small interval ∆,

f(t+ ∆, T )− f(t, T ) ≈ ∆α(t, T ) +
d∑
i=1

σi(t, T )(W i
t+∆ −W i

t ).

Hence

lim
∆→0

1

∆
var (f(t+ ∆, T )− f(t, T )) =

d∑
i=1

σ2
i (t, T ).

And

lim
∆→0

1

∆
cov (f(t+ ∆, T )− f(t, T ), f(t+ ∆, S)− f(t, S)) =

d∑
i=1

σi(t, T )σi(t, S).

We may define an instantaneous correlation coefficient for the increments of the
forward rate, ∑d

i=1 σi(t, T )σi(t, S)√∑d
i=1 σ

2
i (t, T ) ·

∑d
i=1 σ

2
i (t, S)

.

If d = 1, the increments of the forward rates are perfectly correlated everywhere on
the yield curve.

The results of single-factor HJM may be easily generalized. Again we use Mt

as numeraire and denote the discounted bond price as Z(t, T ) = M−1
t P (t, T ). We

have

dtZ(t, T ) = Z(t, T )

[(
1

2
(Σ · Σ)(t, T )−

∫ T

t

α(t, u)du

)
dt+ Σ(t, T ) · dWt

]
Then we seek an η = (ηt) ∈ Rd such that

Σ(t, T ) · ηt =
1

2
(Σ · Σ)(t, T )−

∫ T

t

α(t, u)du.

For the above to have solution, it is necessary that the matrix Σ ≡ (Σi(t, Tj)) be
full rank for all t and Tj. The we define a P̃ such that W̃t defined below is P̃-BM,

dW̃t = dWt + ηtdt.
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Under P̃, Zt(t, T ) is then martingale,

dtZ(t, T ) = Z(t, T )Σ(t, T ) · dW̃t.

The bond price satisfies

dtP (t, T ) = P (t, T )
(
rtdt+ Σ(t, T ) · dW̃t

)
.

And the forward rate,

dtf(t, T ) = −(σ · Σ)(t, T )dt+ σ · dW̃t.

Multi-factor Short Rate Models

Let W̃ = (W̃ 1, W̃ 2, ..., W̃ d) be a d-dimensional Brownian Motion under P̃. And
Let X = (X1, X2, ..., XN) be the N factors that determines the short rate rt. X
generally includes a factor that is the short rate itself.

We write
rt = r(Xt), (4.12)

where Xt satisfies
dXt = ν(Xt)dt+ ρ(Xt) · dW̃t. (4.13)

The term structure P (t, T ) can then be represented as

P (t, T ) = Ẽt
[
exp

(
−
∫ T

t

r(Xs)ds

)]
.

Of course, any derivative that has a terminal payment of g(XT ) may be priced as

Ẽt
[
exp

(
−
∫ T

t

r(Xs)ds

)
g(XT )

]
.

Feynman-Kac Formulation

It is easy to extend the Feynman-Kac formulation of single-factor short rate model
in (4.11) to the multi-factor case. Let F (x, t) = P (t, T ), we have

F2(x, t) + ν(x) · F1(x, t) +
1

2
tr [ρ(x)ρ(x)′F11(x, t)]− r(x)F (x, t) = 0, (4.14)

with
F (x, T ) = 1. (4.15)

Obviously, if we change the boundary condition in (4.15) to F (x, T ) = g(x), F (x, t)
prices any general derivative with terminal payment g(XT ).
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4.5 Pricing Interest Rate Products

In this section we briefly review the pricing of some popular interest rate products,
given the term structure P (t, T ).

Bond with Fixed Coupons

Suppose the coupon rate (uncompounded) is k and the payment is made at a se-
quence of dates Ti = T0 + i∆. The cash flow is shown in the diagram:

t

−1 k k . . . k 1 + k

T0 T1 T2 Tn−1 Tn

This is equivalent to owning a Tn-bond and k∆ units of Ti-bond for each
i = 1, ..., n: {

P (T0, Tn)
k∆P (T0, Ti), i = 1, ..., n.

From

k∆
n∑
i=1

P (T0, Ti) + P (T0, Tn) = 1,

we can determine the appropriate coupon rate,

k =
1− P (T0, Tn)

∆
∑n

i=1 P (T0, Ti)
.

Floating-Rate Bond

Now the coupon rate paid at time Ti is the floating rate at previous payment date
Ti−1, which is defined as

L(Ti−1) =
1

∆

(
1

P (Ti−1, Ti)
− 1

)
.

The cash flow is illustrated in the following diagram:

t

? L(T0)∆ L(T1)∆ . . . L(Tn−2)∆ 1 + L(Tn−1)∆

T0 T1 T2 Tn−1 Tn
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The value of ∆L(Ti−1) at T0 is

MT0ẼT0

(
M−1

Ti
∆L(Ti−1)

)
= MT0ẼT0

[
M−1

Ti

(
1

P (Ti−1, Ti)
− 1

)]
= MT0ẼT0

[
P−1(Ti−1, Ti)ẼTi−1

(
M−1

Ti

)
−M−1

Ti

]
= MT0ẼT0

[
ẼTi−1

M−1
Ti−1
−M−1

Ti

]
= MT0ẼT0

[
M−1

Ti−1
−M−1

Ti

]
= P (T0, Ti−1)− P (T0, Ti).

Note that P−1(Ti−1, Ti) is FTi−1
-measurable and P (Ti−1, Ti) = MTi−1

ẼTi−1
M−1

Ti
. The

contingent claim ∆L(Ti−1) can be replicated by buying a Ti−1-bond and sell a Ti-
bond. At time Ti−1, buy P−1(Ti−1, Ti) units of Ti-bond. The value of floating rate
bond is then

P (T0, Tn) +
n∑
i=1

(P (T0, Ti−1)− P (T0, Ti)) = P (T0, T0) = 1.

Swaps

A swap contract exchanges a sequence of floating rate payments for a sequence of
fixed-rate payments or vice sersa. The cash flow for the party receiving fixed-rate
payments is shown in the following diagram:

t

−L(T0)∆ −L(T1)∆ . . . −L(Tn−2)∆ −L(Tn−1)∆

k k k k

T0 T1 T2 Tn−1 Tn

Entering a swap contract is equivalent to buying a fixed-coupon bond and
selling a floating-rate bond. The former is worth

P (T0, Tn) + k∆
n∑
i=1

P (T0, Ti),

and the latter is worth 1. So the fixed coupon rate k must satisfy

k =
1− P (T0, Tn)

∆
∑n

i=1 P (T0, Ti)
.
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Forward Swaps

The value of the swap at time T0 is

X = P (T0, Tn) + k∆
n∑
i=1

P (T0, Ti)− 1.

The value of X at time t < T0 must be

MtẼt
(
M−1

T0
X
)

= MtẼt

(
M−1

T0
P (T0, Tn) + k∆

n∑
i=1

M−1
T0
P (T0, Ti)−M−1

T0

)

= MtẼt

(
ẼT0M

−1
Tn

+ k∆
n∑
i=1

ẼT0M
−1
Ti
−M−1

T0

)

= MtẼtM−1
Tn

+ k∆
n∑
i=1

MtẼtM−1
Ti
−MtẼtM−1

T0

= P (t, Tn) + k∆
n∑
i=1

P (t, Ti)− P (t, T0) = 0.

So the forward swap rate must be

k =
P (t, T0)− P (t, Tn)

∆
∑n

i=1 P (t, Ti)
.

When t = T0, k is equal to the swap rate.

Swaptions

A swaption is a contract to enter a swap at time T0 with swap rate k. The value of
the swaption at time t < T0 is

MtẼt

(
M−1

T0
max

(
P (T0, Tn) + k∆

n∑
i=1

P (T0, Ti)− 1, 0

))
.

The pricing of such swaptions requires the joint distribution of L(Ti) (0 ≤ i < n)
under a single probability measure. We will come back to this problem in the next
chapter.
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Caps and Floors

A caps contract is an agreement that never pays more than a fixed rate k. So a caps
contract pays at time Ti, 1 ≤ i ≤ n,

ci = ∆ max (L(Ti−1)− k, 0) .

For each i, ci is called a caplet. In contrast, a floors contract pays at Ti

fi = ∆ max (k − L(Ti−1), 0) .

For each i, fi is called a flootlet. Obviously, each caplet (floorlet) is a call (put)
option on a forward rate.

Note that

∆ (L(Ti−1)− k) =
1

P (Ti−1, Ti)
− 1−∆k

= (1 + ∆k)P−1(Ti−1, Ti)

(
1

1 + ∆k
− P (Ti−1, Ti)

)
.

So the value of ci at time t is

MtẼt
(
M−1

Ti
ci
)

= (1 + ∆k)MtẼt
(
M−1

Ti
P−1(Ti−1, Ti) max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

))
= (1 + ∆k)MtẼt

((
ẼTi−1

M−1
Ti

)
P−1(Ti−1, Ti) max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

))
= (1 + ∆k)MtẼt

(
M−1

Ti−1
max

(
1

1 + ∆k
− P (Ti−1, Ti), 0

))
.

The third equality uses the fact that P (Ti−1, Ti) = MTi−1
ẼM−1

Ti
. So a caplet is

equivalent to (1 + ∆k) units of put option on the Ti-bond with strike price (1 + ∆k)
and maturity date Ti−1. A floorlet can be similarly interpreted.

4.6 Forward Measure

Recall that the pricing formula,

xt = MtẼtM−1
T XT ,

where XT is a contingent claim to be realized at time T and the expectation is taken
with respect to the risk-neutral probability measure P̃. To compute the price, we
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need the joint distribution of MT and XT under P̃. This is sometimes not convenient
for practitioners. In this section, we study forward measure, under which we may
obtain simpler pricing formula for many derivatives.

Note that with M0 = 1, we have P (0, T ) = ẼM−1
T . If we define

ξT =
1

P (0, T )MT

=
M−1

T

ẼM−1
T

, (4.16)

we have ξT > 0 a.s. and ẼξT = 1. Hence the FT -measurable random variable ξT
can be the Radon-Nikodym derivative for an equivalent measure for P̃. Hence we
define an equivalent measure QT as follows,

dQT = ξTdP̃. (4.17)

We call QT the T−forward measure. Obviously, as T → 0, QT reduces to P̃. The
density process associated with ξT is given by

ξt = ẼtξT =
1

P (0, T )Mt

(
MtẼtM−1

T

)
=

P (t, T )

P (0, T )Mt

. (4.18)

Indeed, as shown in Section 4.2, ξt is an exponential martingale with ξ0 = 1 and

dξt = ξtΣ(t, T )dW̃t.

We have

ξt = exp

(∫ t

0

Σ(s, T )dW̃s −
1

2

∫ t

0

Σ2(s, T )ds

)
.

Define a process W T
t that satisfies W T

0 = 0 a.s. and

dW T
t = dW̃t − Σ(t, T )dt. (4.19)

By Girsanov Theorem, W T
t is a BM under QT .

Pricing with Forward Measure Using the forward-T measure, the no-arbitrage
price of the contingent claim XT is given by

xt = MtẼtM−1
T XT

= P (t, T )ξ−1
t ẼtξTXT

= P (t, T )ETt XT , (4.20)

where ETt is taken under QT . Note that P (t, T ) is observable at t and that we only
need the distribution of XT under QT to calculate the current price of XT .
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In general, the no-arbitrage price of a contingent claim XS with S ∈ (t, T ] is

xt = MtẼtM−1
S XS

= P (t, T )ξ−1
t ẼtξS

XS

P (S, T )

= P (t, T )ETt
XS

P (S, T )
. (4.21)

This confirms that, to preclude arbitrage opportunity, asset prices with P (t, T ) as
the numeraire must be martingales under the forward-T measure.

The Forward Rate Under QT , the expectation hypothesis holds:

f(t, T ) = − ∂

∂T
logP (t, T )

= − 1

P (t, T )

∂

∂T
Ẽt exp

(
−
∫ T

t

rsds

)
=

Mt

P (t, T )
ẼtM−1

T rT

= ξ−1
t ẼtξT rT

= ETt rT ,

where ξt is given in (4.18). Note that, in general, the expectation hypothesis does
not hold under P.

We may further infer that f(t, T ) is a martingale under QT . To see this, note
that rT = f(T, T ) and that, using (4.19), we have

dtf(t, T ) = −σ(t, T )Σ(t, T )dt+ σ(t, T )dW̃t

= σ(t, T )dW T
t ,

where Σ(t, T ) = −
∫ T
t
σ(t, u)du.

Other Forward Measures With P (t, T ) as numeraire, prices of discount bonds
with other maturities, say P (t, S) with S < T , are martingales under QT . That is,
P (t, S)/P (t, T ) is a QT -martingale for any 0 < S < T . In fact, we can prove that

P (t, S)

P (t, T )
=
P (0, S)

P (0, T )
exp

(
Lt −

1

2
[L]t

)
, (4.22)

where Lt = −
∫ t

0
ΣS,T (s)dW T

s with ΣS,T (t) ≡ Σ(t, T ) − Σ(t, S) = −
∫ T
S
σ(t, u)du.

To show this, denote Y (t, S) ≡ P (t, S)/Mt and Z(t, T ) ≡ P (t, T )/Mt. We have
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P (t, S)/P (t, T ) = Y (t, S)/Z(t, T ) and, from (4.3),

dtY (t, S) = Y (t, S)Σ(t, S)dW̃t

dtZ(t, T ) = Z(t, T )Σ(t, T )dW̃t.

Applying Ito’s lemma, we have

dt
Y (t, S)

Z(t, T )
=

1

Z(t, T )
dtY (t, S)− Y (t, S)

Z2(t, T )
dtZ(t, T ) +

Y (t, S)

Z3(t, T )
d[Z]t −

1

Z2(t, T )
d[Z, Y ]t

= −Y (t, S)

Z(t, T )
ΣS,T (t)

(
dW̃t − Σ(t, T )dt

)
= −Y (t, S)

Z(t, T )
ΣS,T (t)dW T

t .

We thus obtain

dt
P (t, S)

P (t, T )
=
P (t, S)

P (t, T )
dLt,

which is the differential form of (4.22).

Using (4.22), we can define S−forward measure QS with the density process

ξt =
P (0, T )

P (0, S)

P (t, S)

P (t, T )
= exp

(
Lt −

1

2
[L]t

)
. (4.23)

Hence we obtain a spectrum of equivalent martingale measures, each of which cor-
responds to the numeraire of P (0, S).

Pricing Bond Options Consider a risk-free discount bond maturing on T and a
European call option on the bond with expiration date S ≤ T and strike price K.
Using (4.21), the price of the call at time 0 is given by

P (0, T )ET
[
P (S, T )−1 max(P (S, T )−K, 0)

]
= P (0, T )ET I{P (S, T ) ≥ K} −KP (0, T )ET

[
P (S, T )−1I{P (S, T ) ≥ K}

]
= P (0, T )QT{P (S, T ) ≥ K} −KP (0, S)ξ−1

0 ET [ξSI{P (S, T ) ≥ K}]
= P (0, T )QT{P (S, T ) ≥ K} −KP (0, S)QS{P (S, T ) ≥ K},

where ξt is defined in (4.23). Note that

QT{P (S, T ) ≥ K} = QT

{
P (S, S)

P (S, T )
≤ 1

K

}
= QT

{
log

P (S, S)

P (S, T )
≤ − logK

}
QS{P (S, T ) ≥ K} = QS

{
P (S, T )

P (S, S)
≥ K

}
= QS

{
log

P (S, T )

P (S, S)
≥ logK

}
.
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Note that P (t,S)
P (t,T )

and P (t,T )
P (t,S)

are martingales under QT and QS, respectively. We can

show (left as an exercise) that

log
P (S, S)

P (S, T )
= log

P (0, S)

P (0, T )
− 1

2

∫ S

0

ΣS,T (u)2du−
∫ S

0

ΣS,T (u)dW T
u ,

so that

log
P (S, S)

P (S, T )
∼ N

(
log

P (0, S)

P (0, T )
− 1

2

∫ S

0

Σ2
S,T (u)du,

∫ S

0

Σ2
S,T (u)du

)
.

So P (S,S)
P (S,T )

is log normal if σ(t, T ) (and thus Σ(t, T )) is deterministic. The Vasicek

model, for example, has σ(t, T ) = σ exp(α(T − t)). Similarly, we can obtain the

distribution of log P (S,T )
P (S,S)

under QS. It turns out that the pricing formula of the
European call on the T−bond is given by

P (0, T )Φ(d1)−KP (0, S)Φ(d2),

where Φ is the cumulative distribution function of N(0, 1) and

d1,2 =
log P (0,T )

KP (0,S)
± 1

2

∫ S
0

Σ2
S,T (u)du(∫ S

0
Σ2
S,T (u)du

)1/2
.
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Appendix A

Appendix to Chapter 1

A.1 Classical Derivation of CAPM

A.1.1 Efficiency Frontier without Riskfree Asset

Suppose there are N risky assets, and the return vector of these assets has a mean
of µ and a covariance matrix Σ. Each agent selects a portfolio of these assets h,
where h′ι = 1 and ι is a vector of ones. Thus the portfolio return has mean µh = h′µ
and variance σ2

h = h′Σh. We assume that all agents in the economy are identical
with utility function u(µh, σ

2
h). It is understood that u(·, ·) is increasing in µh and

decreasing in σ2
h.

Given an objective mean return of portfolio, agents try to find a portfolio that
minimizes the variance. Mathematically, the following problem is to be solved,

min
h

1

2
h′Σh,

subject to
h′µ = µh and h′ι = 1.

The Lagrangian function is given by

L =
1

2
h′Σh+ λ1(h′µ− µh) + λ2(h′ι− 1).

The first order conditions are

Σh = λ1µ+ λ2ι, (A.1)

µ′h = µh, (A.2)

ι′h = 1. (A.3)
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(A.1) yields
h = Σ−1(λ1µ+ λ2ι). (A.4)

Pre-multiply (A.4) with µ′ and ι′, respectively, we obtain

Aλ1 +Bλ2 = µh

Bλ1 + Cλ2 = 1,

where
A = µ′Σ−1µ, B = µ′Σ−1ι, C = ι′Σ−1ι.

Define D = AC −B2. We obtain

λ1 =
1

D
(Cµh −B), λ2 =

1

D
(−Bµh + A).

Plug in (A.4), we obtain
h = g0 + g1µh, (A.5)

where

g0 =
1

D
(AΣ−1ι−BΣ−1µ), g1 =

1

D
(CΣ−1µ−BΣ−1ι).

The variance of the return on h is given by

σ2
h = h′Σh = g′0Σg0 + 2µhg

′
0Σg1 + µ2

hg
′
1Σg1.

Hence the pairs (µh, σh) trace a hyperbola boundary, the upper boundary of which
is called the efficiency frontier.

Note that the minimum-variance portfolio h (A.5) is linear in µh. If we know
two minimum-variance portfolios h1 and h2 with mean returns µ1 and µ2, respec-
tively, then we know all minimum-variance portfolios. Indeed, for all expected
return µa, the corresponding minimum-variance portfolio can be constructed by
ha = αh1 + (1 − α)h2, where α is obtained by solving µa = αµ1 + (1 − α)µ2. This
observation is often called the two mutual fund theorem.

A.1.2 CAPM

Suppose there is a money account with a risk-free return of r. Now the agents’
problem becomes

min
h

1

2
h′Σh,

subject to
µ′h+ (1− ι′h)r = µh.
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The Lagrangian is

L =
1

2
h′Σh+ λ(µh − µ′h− (1− ι′h)r).

The first-order conditions are

Σh = λ(µ− rι)
µ′h+ (1− ι′h)r = µh.

Solving this set of equations, we obtain

h =
µh − r

(µ− rι)′Σ−1(µ− rι)
· Σ−1(µ− rι). (A.6)

Note that this portfolio equals a scalar that depends on µh times a vector that
does not depend on µh. In other words, for all expected return, the exactly same
proportion of each risky assets are chosen. We normalize Σ−1(µ− rι) to obtain the
so-called tangency portfolio,

hm =
Σ−1(µ− rι)
ι′Σ−1(µ− rι)

.

The normalization makes the elements in hm adding up to one. In the idealized
world of CAPM, therefore, everyone will choose the tangency portfolio. Individuals
differ only in the percentage of cash holding or leverage. In equilibrium, the market
portfolio must be the tangency portfolio.

Let Rm be the market return. The variance of the market return is given by

var(Rm) = h′mΣhm =
(µ− rι)′Σ−1(µ− rι)

(ι′Σ−1(µ− rι))2 .

The expected market premium over the risk-free return,

ERm − r = h′mµ− r =
(µ− rι)′Σ−1(µ− rι)

ι′Σ−1(µ− rι)
.

Let Ri be the i-th asset. We have ERi = e′iµ and

cov(Ri, Rm) = e′iΣhm,

where ei is a vector that has 1 on the i-th element and 0 on others. Now we have

(ERm − r)
cov(Ri, Rm)

var(Rm)
= e′i(µ− rι) = ERi − r.
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Rearranging terms, we obtain the celebrated CAPM model,

ERi = r + βi(ERm − r), (A.7)

where

βi =
cov(Ri, Rm)

var(Rm)
. (A.8)

In the CAPM model, the expected payoff of a security is a linear function of the
security’s beta, which characterizes the systematic risk contained in the security.
The linear function is called the security market line (SML). Obviously, the intercept
of the SML is the risk-free rate (r) and the slope of the SML is the market risk
premium (ERm − r).
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delta, 44
delta hedging, 45
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diffusion, 24
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Euler approximation, 29
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Feller’s squared-root Process, 27
Feynman-Kac solution, 46
Feynman-Kac solution
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forward price of bond, 67
forward rate, 67
forwards, 54
forwards-futures spread, 55
futures, 55

gains process, 42
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geometric Brownian motion, 26
geometric form, 42
Girsanov

multivariate, 56
Girsanov theorem, 52
Girsanov theorem
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Heath-Jarrow-Morton model
multi-factor, 77
single factor, 68

Ho and Lee model, 72

integration by parts, 22
Ito integral, 19
Ito’s formula, 22, 23
Ito’s formula

multivariate, 23

linear drift, 25

market price of risk, 54
Markov process, 16
Markov process

homogenous, 17
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martingale, 15
martingale equivalent measure, 50
Milstein approximation, 30

natural filtration, 14
numeraire, 43
numeraire invariance theorem, 43

Ornstein-Uhlenbeck process, 27

portfolio, 42

quadratic covariation, 20
quadratic variation, 20

random variable, 13

self-financing, 43
semimartingale, 20
short rate, 66
short rate model, 71
sigma field, 13
sigma field

generated by a random variable, 14
spot rate, 65
Stieltjes, 19
stochastic process, 14
Stratonovich integral, 19
sub-martingale, 15
sup-martingale, 15
swaps, 81
swaptions, 82

term structure, 65
term to maturity (TTM), 66
theta, 44
trading strategy, 42
transition density, 17
transition probability, 16

Vasicek model, 74

yield curve, 66
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