Problem Set 3 for Econometrics

due on next lecture

- 1. Suppose we conduct hypothesis testing on a simple linear regression with a sample size of 20, $y_i = \beta_0 + \beta_1 x_i + u_i$.
 - (a) Let the hypothesis be

$$H_0: \beta_1 = 0, \quad H_1: \beta_1 \neq 0,$$

and the t statistic is t_{β_1} . What would be the critical values for the Student t test?

- (b) If $t_{\beta_1} = 2.58$, would you reject the hypothesis at 95% significance level? What is the p-value of your test?
- (c) Suppose now that you have a strong prior believe that x should have a positive effect on y. Does this change critical value and p-value of your test?
- 2. Consider the following regression,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_1 x_3 + \beta_4 x_4 + \beta_5 x_5 + u.$$

Show how you would test the following hypotheses by running two regressions and computing an F-statistic. Show explicitly the regressions you would run and the degrees of freedom of each test statistic.

- (a) $\beta_1 = 0$.
- (b) $\beta_1 = 0 \text{ and } \beta_4 = \beta_5.$
- (c) $\beta_1 = 0$, $\beta_3 = 0$, and $\beta_4/\beta_5 = 2$.
- 3. To study the determinants of wage, we first estimate the following model,

$$\log(wage) = \beta_0 + \beta_1 e du + \beta_2 e du^2 + \beta_3 expr + u. \tag{1}$$

The EViews output is reported in Figure 1.

(a) From the results in Fig. 1, how much increase in wage would be expected to get if a person with 10 years of schooling hypothetically obtains one more year of education.

To see how parents' education affect children's income, we run another regression,

$$\log(wage) = \beta_0 + \beta_1 edu + \beta_2 expr + \beta_3 mothedu + \beta_4 fathedu + u, \tag{2}$$

where mothedu is the mother's education and fathedu is the father's education, which is measured by the number of years of schooling. The estimated model is reported in Fig. 2, and the covariance matrix for the estimators is given in Fig. 3.

- (b) Test the statement that parents' education does NOT have any influence on children's income.
- (c) Test the statement that fathers' education has the SAME influence on children's income as mothers' education.

Dependent Variable: LOG(WAGE)

Method: Least Squares Date: 06/08/09 Time: 12:41

Sample: 1 1230

Included observations: 1230

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-0.760258	0.367499	-2.068736	0.0388	
EDU	0.303465	0.050207	6.044235	0.0000	
EDU^2	-0.006401	0.001826 -3.505894		0.0005	
EXPR	0.031761	0.006750	4.705510	0.0000	
R-squared	0.184599	Mean dependent var		2.413807	
Adjusted R-squared	0.182604	S.D. dependent var		0.593715	
S.E. of regression	0.536777	Akaike info cr	1.596780		
Sum squared resid	353.2473	Schwarz criterion		1.613413	
Log likelihood	-978.0197	F-statistic		92.51840	
Durbin-Watson stat	1.867559	Prob(F-statist	ic)	0.000000	

Figure 1: Model 1.

Dependent Variable: LOG(WAGE)

Method: Least Squares Date: 06/08/09 Time: 12:44 Sample: 1 1230

Included observations: 1230

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.879362	0.367754	-2.391166	0.0169
EDU	0.278142	0.050156	5.545512	0.0000
EDU^2	-0.005979	0.001815	-3.294175	0.0010
EXPR	0.033961	0.006719	5.054246	0.0000
MOTHEDU	0.008469	0.008635	0.980712	0.3269
FATHEDU	0.019956	0.006007	3.322108	0.0009
R-squared	0.197889	Mean depend	2.413807	
Adjusted R-squared	0.194612	S.D. depende	0.593715	
S.E. of regression	0.532820	Akaike info cri	1.583599	
Sum squared resid	347.4900	Schwarz criterion		1.608550
Log likelihood	-967.9137	F-statistic		60.39465
Durbin-Watson stat	1.868336	Prob(F-statistic)		0.000000

Figure 2: Model 2.

Coefficient Covariance Matrix									
	С	EDU	EDU^2	EXPR	MOTHEDU	FATHEDU			
C	0.135243	-0.017026	0.000580	-0.001006	-0.000373	3.84E-05			
EDU	-0.017026	0.002516	-8.94E-05	3.59E-05	-1.51E-05	-2.28E-05			
EDU^2	0.000580	-8.94E-05	3.29E-06	1.27E-07	-7.64E-08	5.37E-07			
EXPR	-0.001006	3.59E-05	1.27E-07	4.51E-05	-3.04E-07	2.75E-06			
MOTHEDU	-0.000373	-1.51E-05	-7.64E-08	-3.04E-07	7.46E-05	-2.58E-05			
FATHEDU	3.84E-05	-2.28E-05	5.37E-07	2.75E-06	-2.58E-05	3.61E-05			

Figure 3: Model 2.

				5% Critical Values of the F Distribution						
				Numer DF						
Denom DF	1	2	3	4	5	6	7	8	9	10
10	4.97	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
11	4.84	3. 98	3.59	3.36	3.20	3.10	3.01	2. 95	2.90	2.85
12	4.75	3.89	3.49	3.26	3.11	3.00	2. 91	2.85	2.80	2.75
13	4.67	3.81	3.41	3.18	3.03	2. 92	2.83	2.77	2.71	2.67
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
17	4.45	3.59	3.20	2. 97	2.81	2.70	2.61	2.55	2.49	2.45
18	4. 41	3.56	3.16	2. 93	2.77	2.66	2.58	2.51	2.46	2.41
19	4.38	3.52	3.13	2. 90	2.74	2.63	2.54	2.48	2. 42	2.38
20	4.35	3. 49	3.10	2. 87	2.71	2.60	2.51	2. 45	2.39	2.35
21	4.33	3. 47	3.07	2.84	2.69	2.57	2.49	2. 42	2.37	2.32
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
23	4. 28	3.42	3.03	2.80	2.64	2.53	2.44	2.38	2.32	2. 28
24	4. 26	3.40	3.01	2.78	2.62	2.51	2. 42	2.36	2.30	2. 26
25	4. 24	3.39	2.99	2.76	2.60	2.49	2. 41	2.34	2. 28	2. 24
26	4. 23	3. 37	2.98	2.74	2.59	2. 47	2.39	2.32	2. 27	2. 22
27	4. 21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2. 25	2.20
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2. 29	2. 24	2.19
29	4.18	3. 33	2. 93	2.70	2.55	2. 43	2.35	2. 28	2. 22	2.18
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2. 27	2. 21	2.17
40	4.09	3. 23	2.84	2.61	2.45	2.34	2. 25	2.18	2.12	2.08
60	4.00	3.15	2.76	2.53	2.37	2. 25	2.17	2.10	2.04	1.99
90	3.95	3.10	2.71	2.47	2.32	2. 20	2.11	2.04	1.99	1.94
120	3. 92	3.07	2.68	2.45	2. 29	2.18	2.09	2.02	1.96	1.91
inf	3.84	3.00	2.60	2.37	2. 21	2.10	2.01	1.94	1.88	1.83

Figure 4: 5% Critical Values of F Distribution.

	Right ta	il probal	bility o	f t dist	ribution	1	1	
							t (p.df)	
df\p	0.4	0.25	0.1	0.05	0.025	0.01	0.005	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	636.619
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	6.869
6	0.265	0.718	1.440	1.943	2. 447	3.143	3.707	5.959
7	0.263	0.711	1.415	1.895	2.365	2. 998	3.499	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4. 781
10	0.260	0.700	1.372	1.812	2. 228	2.764	3.169	4.587
11	0.260	0.697	1.363	1.796	2. 201	2.718	3.106	4. 437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	4. 221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	4.141
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	4.073
16	0.258	0.690	1.337	1.746	2.120	2. 583	2. 921	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3. 965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3. 922
19		0.688	1.328	1.729	2.093	2.539	2.861	3.883
20	0.257	0.687	1.325	1.725	2.086	2. 528	2.845	3.850
25	0.256	0.684	1.316	1.708	2.060	2. 485	2. 787	3. 725
30	0.256	0.683	1.310	1.697	2.042	2. 457	2.750	3.646
inf	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.291

Figure 5: Right-tail Probabilities of t Distribution