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The Objectives

I After estimating a model, we should always perform
diagnostics on the model. In particular, we should check
whether the assumptions we made are valid.

I For OLS estimation, we should usually check:
I Is the relationship between x and y linear?
I Are the residuals serially uncorrelated?
I Are the residuals uncorrelated with explanatory variables?

(endogeneity)
I Does homoscedasticity hold?



Estimation of Residuals

I Residuals are unobservable. But they can be estimated:

ûi = yi − x ′i β̂.

I Using matrix language,

û = (I − PX )Y .

I If β̂ is close to β, then ûi is close to ui .
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Residual Plots

We can plot

I Residuals

I Residuals versus Fitted Value

I Residuals versus Explanatory Variables

Any pattern in residual plots suggests nonlinearity or endogeneity.
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Figure: Residual Plots. DGP: y = 0.2 + x + 0.5x2 + u



Partial Residual Plots

I To see whether there exists nonlinearity in a regressor, say the
j-th explanatory variable xj , We can plot

û + β̂jxj versus xj ,

where û is residual from the full model.

I Partial residual plots may help us find the true (nonlinear)
functional form of xj .



Partial Residual Plots: Example

Suppose the true model is

y = β0 + β1x + β2z + g(z) + u,

where g(z) is a nonlinear function. We mistakenly estimate:

y = β̂0 + β̂1x + β̂2z + û.

If we plot β̂2z + û versus z , we may probably be able to detect
nonlinearity in g(z).
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Figure: Residual Plots. DGP: y = 0.2 + x + 0.5z + z2 + u
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The iid Assumption

I The CLR assumption dictates that residuals should be iid.

I It is generally difficult to determine whether a given number
of observations are from the same distribution.

I If there is a natural order of the observations (e.g., time),
then we may check whether the residuals are correlated.

I If there is correlation, then the iid assumption is violated.



Residuals with Time

I When we deal with time series regression, for example,

πt = β0 + β0mt + ut ,

where πt is the inflation rate and mt is the growth rate of
money supply, both indexed by time t.

I Now the “natural order” is time, and a time series plot of the
estimated residual contains information.



Residual Plots

We can plot:

I Residuals over time

I Residuals v.s. previous residual

I Correlogram
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Figure: Residuals over time: ut = αut−1 + εt , α = 0, 0.5, 0.95, from top
to bottom.
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Durbin-Watson Test

I Durbin-Watson is the formal test for independence, or more
precisely, non-correlation.

I It assumes a AR(1) model for ut , ut = αut−1 + εt .

I The null hypothesis is: H0 : ρ = α = 0.

I The test statistic is

DW =

∑T
t=2(ût − ût−1)

2∑T
t=1 û

2
t−1

.



Durbin-Watson Test

I DW ∈ [0, 4].

I DW = 2 indicates no autocorrelation.

I If DW is substantially less than 2, there is evidence of positive
serial correlation. As a rough rule of thumb, if DW is less
than 1.0, there may be cause for alarm.

I Small values of DW indicate successive error terms are, on
average, close in value to one another, or positively correlated.

I Large values of DW indicate successive error terms are, on
average, much different in value to one another, or negatively
correlated.



Fixing Correlation

I It’s most likely that the model is misspecified.
I The usual practices are:

I Add more explanatory variables
I Add more lags of the existing explanatory variables
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Checking Heteroscedasticity

I If var(ui |x) = σ2, we call the model “homoscedastic”. If not,
we call it “heteroscedastic”.

I If homoscedasticity does not hold, but CLR Assumptions 1-4
still hold, the OLS estimator is still unbiased and consistent.
However, OLS is no longer BLUE.

I We can detect heteroscedasticity by looking at the residuals
v.s. regressors.

I For simple regressions, we can look at regression lines.
I And we can formally test for homoscedasticity.

I White test
I Breusch-Pagan test
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Fixing Heteroscedasticity

I Use a different specification for the model (different variables,
or perhaps non-linear transformations of the variables).

I Use GLS (Generalized Least Square).
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Model Selection

I Models simplify. As a result, there is no such thing as a “true
model” except in simulation studies.

I The problem of selecting the best model among a set of
models is called “model selection”. But how do we define
“best”?

I In theoretical studies, a good model is a set of assumptions
(open unrealistic) that isolate crucial features for a particular
problem and yield predictions that are testable.

I In empirical studies, a good model is one that yields good
performance in out-of-sample predictions.
I Predictions on individuals who are not in the sample.
I Forecast the future value of a time series.



Nested and Non-nested Models

I Two models are “nested” when one can be obtained by
imposing restrictions on the other. For example, the following
model

y = β0 + β1x1 + β2x2 + u

nests the following simple regression,

y = β0 + β1x1 + u.

I Otherwise, we call these two models “non-nested”.

I Model selection requires different treatment in the context of
nested or non-nested models.



Tradeoffs in Model Selection

I Model selection is challenging since we generally do not know
whether improvement of fitness reflects genuine improvement
of modeling, that is, producing better prediction/forecast.
I Estimation error in complex models v.s. mis-specification risk

in parsimonious models.
I Goodness of fit within sample v.s. accuracy of out-of-sample

prediction/forecast.
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Hypothesis Testing

I If we deal with nested models, we may use hypothesis testing
to select model, especially the likelihood ratio (LR) test,
which can be applied to models more general than the linear
regression.

I If the dimension of the full model is large, we have to rely on
some ad hoc procedure.
I Backward elimination.
I Forward selection.

I For non-nested models, the classical LR test does not work.
However, we can use modified one as in Vuong (1989).



Likelihood Ratio Test for Model Selection

Suppose we have a full model f1(θ1) and a restricted model f2(θ2),
where f1 and f2 are likelihood functions, and θ2 ⊂ θ1. Then we
construct LR statistic as follows,

LR = 2
(
log f1

(
θ̂1

)
− log f2

(
θ̂2

))
→d χ2

j ,

where j is the difference in the dimensions of θ1 and θ2.

I If LR is bigger than a critical value (or the p-value of LR is
small), then it says that the full model is superior.

I If LR is smaller than a critical value (or the p-value of LR is
big), then it says that there is insufficient evidence for the full
model to be superior, hence the simpler model should be
selected.



Likelihood Ratio Test for Model Selection

I In linear regression, the LR test is reduced to F test (or t test
if j = 1).

I Note that a higher likelihood does not imply a better model,
otherwise the full model would always be the best one.

I A more complex model must have sufficiently higher likelihood
to be justified.

I And this requirement of “higher likelihood” is proportional to
j , since if X ∼ χ2

j , then EX = j . This is how LRT achieves
the penalty against complexity.



Backward and Forward Elimination

I Backward elimination starts from the full model.
I At each step, eliminate the variable with the least effect on the

model, using Student t or F statistic.
I The process stops when some threshold is reached (e.g., a

threshold on t or F statistic, minimum number of regressors).

I Forward elimination starts from the null model (y = β0 + u).
I At each step, add the variable with the largest effect on the

model.
I The process stops when some threshold is reached (e.g., a

threshold on t or F statistic, minimum number of regressors).

I The backward and forward elimination procedures may not
converge to a unique model. Neither guarantees convergence
to the “true model”.
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Akaike Information Criterion

I The Akaike information criterion (AIC) is named after the
statistician Hirotugu Akaike, its inventor.

I AIC is founded on information theory. When a model is
constructed to characterize the data generating process
(DGP), the model must always simplify. Hence some
information will be lost by using the model to represent the
reality. AIC is an estimator of the relative information lost by
a given model.

I Let f (θ̂) be the maximum likelihood of a given model and let
k be the number of parameters and n be the sample size.
Then AIC is defined by

AIC =
2

n
k − 2

n
log f (θ̂).

I One would select the model with smaller AIC (thus smaller
information loss). Obviously, AIC achieves a certain balance
between model fit and complexity.



AIC for Linear Regression

Consider a predictive linear regression,

yt+1 = x ′tβ + ut+1,

where β ∈ Rk and ut ∼ i .i .d . N(0, σ2). Then

log f (θ̂) = −n

2
log(2πσ̂2)− 1

2σ̂2

n−1∑
t=0

û2t+1

= −n

2
log(2πσ̂2)− n

2
.

Hence

AIC = log(σ̂2) +
2

n
k + C ,

where C is a constant that does not change with k and hence can
be omitted.



Bayesian Information Criterion

I The Bayesian information criterion (BIC) is also called
Schwarz criterion (SIC or SBIC), developed by Gideon E.
Schwarz using a Bayesian argument.

I BIC selects the model with the highest posterior probability
given the data. It is, however, independent of the prior.

I Let f (θ̂) be the maximum likelihood of a given model and let
k be the number of parameters and n be the sample size.
Then BIC is defined by

BIC =
log n

n
k − 2

n
log f (θ̂).

I One would select the model with smaller BIC. Obviously, BIC
penalizes complexity more severely than AIC.

I For a predictive linear regression, we have

BIC = log(σ̂2) +
log n

n
k.



The Relationship between Information Criteria and the LR
Test

I For nested models, both IC and LRT may work. But they do
not necessarily lead to the same choice.

I However, model selections based on IC and LRT have
different meanings.
I We conclude from IC that one model is better than the other.
I While in LRT, we conclude either that the complex model is

better (rejection), or that there is no sufficient evidence to
differentiate between the complex and the simple.

I IC works for non-nested models, too. But LRT requires a
modified version to work for non-nested models.
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Cross-validation for Independent Sample

I Leave-p-out cross-validation.
I Given a model specification, estimate the model using n − p

observations;
I Predict the remaining p observations using the estimated

model;
I Calculate the prediction error;
I Repeat the process for C n

p times, calculate the MSE (mean
squared error);

I Select the model specification with the smallest MSE.

I Special cases:
I Leave-one-out cv
I k-fold cv



Cross-validation for Time Series

I Leave-p-out cross-validation, where p = 2v + 1.
I Given a model specification, estimate the model using all

observations apart from those in [t − v , t + v ];
I Predict the remaining p observations using the estimated

model, and calculate the prediction error;
I Repeat the process for n − p times, calculate the MSE (mean

squared error).
I Select the model specification with the smallest MSE. That is,

select the model which minimizes the following

CV =
1

n − 2v − 1

n−v∑
t=v+1

[
1

2v + 1

t+v∑
s=t−v

(
ys+1 − x ′s β̂{t−v :t+v}

)2
]
,

where β̂{t−v :t+v} represents the estimated model using sample
apart from those in [t − v , t + v ].



Cross-validation

I Cross-validation naturally avoids the problem of overfit in
model selection.

I Asymptotically, minimizing the CV value is equivalent to
minimizing the AIC. This is true for any model (Stone 1977),
not just linear models.

I CV can be used to select variables in linear models, or tuning
parameters in nonparametric models.

I CV does not always work.
I It requires sampling from the same joint distribution. Or in

time series setting, it requires joint stationarity.
I If there are identical observations, then leave-one-out cv does

not work. Leave-p-out cv can solve this problem, at heavier
computation costs.

I The outcome of cv is often sensitive to small variations in
data. Again, leave-p-out can be more robust.

I Be conservative with statistical tests after model selection
using cross-validation.



Outline

I Diagnostics
I Model Selection

I Introduction
I Hypothesis testing
I Information criterion
I Cross-validation
I Lasso

I Structural Change



Lasso

For the purpose of selecting a small number of relevant regressors
among a possibly large number of variables, Lasso (Least absolute
shrinkage and selection operator) solves the following problem,

min
{βj}

1

2n

n∑
i=1

yi −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj |,

where λ is the penalty on the absolute values of βj .

I If λ = 0, Lasso reduces to the usual OLS. If λ = ∞, Lasso
forces all parameters to exactly zero.

I With an appropriate value of λ, Lasso can force the
parameters on the irrelevant regressors to exactly zero, while
keeping the relevant ones.

I Lasso has become very popular for the estimation of
high-dimensional models with some built-in sparseness.



Lasso

To see why Lasso can force parameters to exactly zero, we consider
the case where p = 2,

min
{β1,β2}

1

2n

n∑
i=1

(yi − β1xi1 − β2xi2)
2 + λ (|β1|+ |β2|) .

This is equivalent to

min
{β1,β2}

1

2n

n∑
i=1

(yi − β1xi1 − β2xi2)
2 subject to |β1|+ |β2| ≤ s.

Graphically,
∑n

i=1 (yi − β1xi1 − β2xi2)
2 = z are ellipses in the

(β1, β2) plane, while (|β1|+ |β2|) ≤ s is a diamond around 0.
Hence corner solutions can be easily produced.



Figure: (a) Lasso; (b) Ridge regression. Graph is from Tibshirani (1996)



Ridge Regression

I While Lasso penalizes the absolute values of the parameters,
the ridge regression penalizes the squared values of the
parameters.

I When p = 2, the ridge regression solves

min
{β1,β2}

1

2n

n∑
i=1

(yi − β1xi1 − β2xi2)
2 + λ

(
β2
1 + β2

2

)
.

This is equivalent to

min
{β1,β2}

1

2n

n∑
i=1

(yi − β1xi1 − β2xi2)
2 subject to β2

1 + β2
2 ≤ s.

Graphically, 1
2n

∑n
i=1 (yi − β1xi1 − β2xi2)

2 = z are ellipses in
the (β1, β2) plane, while β2

1 + β2
2 ≤ s is a circle around 0.



Elastic net

The elastic net combines Lasso and the ridge regression. Let
∥β∥1 = |β1|+ · · ·+ |βp| and ∥β∥22 =

(
β2
1 + · · ·+ β2

p

)2
. The elastic

net solves

min
{β}

1

2n

n∑
i=1

(
yi − x ′iβ

)2
+ λPα(β),

where

Pα(β) =
1− α

2
∥β∥22 + α∥β∥1.

I If α → 1, then the elastic net reduces to Lasso.

I If α → 0, then it approaches the ridge regression.



The Application of Lasso and Elastic Net

I λ can be selected using cross-validation.

I After model selection using Lasso or elastic net, one can
estimate the selected model using OLS. This step is called
post-Lasso estimation.

I When highly correlated variables are present, Lasso can be
unstable and elastic net may yield better out-of-sample
forecasts.

I The Matlab command for Lasso and elastic net is “lasso”.
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The time instability of regression analysis

I Kenyes: The (regression) coefficients arrived at are apparently
assumed to be constant for 10 years or for a larger period.
Yet, surely we know that they are not constant. There is no
reason at all why they should not be different every year.

I Lucas: Given that the structure of an econometric model
consists of optimal decision rules of economic agents, and
that optimal decision rules vary systematically with changes in
the structure of series relevant to the decision maker, it
follows that any change in policy will systematically alter the
structure of econometric models.



Econometric models that allow time-varying coefficients

I Regression with piecewise constant coefficients (structural
breaks)

I State-space models

I Random-coefficient models

I Functional-coefficient models



A limited form of time-varying-coefficient regression model
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Dealing with piecewise-constant coefficients

I Regression with a known break date

I Regression with an unknown break date

I Regression with multiple breaks

I Testing for an unknown number of structural breaks (e.g., Bai
and Perron (1998, 2003))

I Shrinkage-based estimation (e.g., Qian and Su (2015, 2014,
2016), Li, Qian, and Su (2016))



Regression with a Known Break Date

Consider the following linear regression with a possible structural
break at k0,

yt = x ′tβ1 + ut , t = 1, . . . , k0 − 1

yt = x ′tβ2 + ut , t = k0, . . . , n,

where xt is p × 1.

I If β1 ̸= β2, then there is a common break in all coefficients.



Testing for a Break at a Known Date

Let X1 = (x1, . . . , xk0−1)
′, X2 = (xk0 , . . . , xn)

′. The model can be
re-written as

Y =

[
X1 0
0 X2

] [
β1
β2

]
+ u.

Then the test for a known break at k0 is:

H0 : β1 = β2, H1 : Otherwise.

I We may conduct the usual F test (the Chow test).

I Or equivalently, we may use the Wald statistic.



The Wald Test

The Wald test compares the estimate θ̂ of the unrestricted model
to the hypothetical value θ0, assuming that
√
n
(
θ̂ − θ0

)
→d N(0,Σθ0).

I Univariate case: W =
(θ̂−θ0)

2

var(θ̂)
→d χ2

1.

I Multivariate case: let θ ∈ Rp, consider the following test,

H0 : Rθ = r , H1 : Rθ ̸= r ,

where R is d × p and r is d × 1. Then the Wald test is given
by

W = (R θ̂ − r)′
(
R
(
Σ̂θ0/n

)
R ′
)−1

(R θ̂ − r) →d χ2
d .

I In finite sample, under normality, W /d ∼ Fd ,n−p.



The Wald Test of a Break at t = k0
Let

X =

[
X1 0
0 X2

]
, β =

[
β1
β2

]
.

Then

Σβ̂ = σ2
(
X ′X

)−1
= σ2

[
(X ′

1X1)
−1 0

0 (X ′
2X2)

−1

]
.

Since β̂1 − β̂2 = [I − I ]

[
β̂1
β̂2

]
,

Σβ̂1−β̂2
= [I − I ]Σβ̂[I − I ]′ = σ2

[
(X ′

1X1)
−1 + (X ′

2X2)
−1

]
.

Then

W =
(
β̂1 − β̂2

)′ {
s2

[
(X ′

1X1)
−1 + (X ′

2X2)
−1

]}−1
(
β̂1 − β̂2

)
→d χ2

p,

where s2 = û′û/(n − 2p) is the estimate of σ2.



Testing for a Break with an Unknown Date

Let X1 = (x1, . . . , xk−1)
′, X2 = (xk , . . . , xn)

′, where k is unknown.
Note that the Wald statistic is now a function of k ,

W (k) =
(
β̂1 − β̂2

)′ {
s2

[
(X ′

1X1)
−1 + (X ′

2X2)
−1

]}−1
(
β̂1 − β̂2

)
,

where X1, X2, β̂1, β̂2, and s2 are all dependent on k. Then a
natural test statistic for testing β1 = β2 is

SupW = sup
ϵn≤k≤(1−ϵ)n

W (k)/p,

where ϵ is a small number called “trimming parameter”.

I We reject the null hypothesis (no break) when SupW is
sufficiently large.



Testing for a Break with an Unknown Date

I The distribution of SupW , however, is not standard. The
break date can be estimated by

k̂ = argmaxp≤k≤n−pW (k)/p.

I The power of SupW (the probability of rejecting H0 when H1

is true) is not optimal.

I Andrews and Ploberger (1994) proposed a class of optimal
tests. For example

MeanW =
1

n

(1−ϵ)n∑
k=ϵn

W (k)/p

ExpW = log

1

n

(1−ϵ)n∑
k=ϵn

exp

(
1

2
W (k)/p

) .



The Linear Regression with Multiple Breaks
Consider the linear regression with m structural breaks,

yt = x ′tβj + ut , t ∈ {Tj−1, . . . ,Tj − 1}, j = 1, . . . ,m + 1,

where we define T0 ≡ 0, Tm+1 ≡ n+ 1, and minj{Tj −Tj−1} ≥ p.

I We assume that m is known, then there are m+ 1 regimes. In
each regime, the coefficient βj is constant and hence can be
estimated by OLS.

I To estimate the breaks, we may solve the following problem,

min
T1,...,Tm

SSR(T1, . . . ,Tm),

where SSR is the sum of squared residuals associated with the
partition T = {T1, . . . ,Tm}.

I The computation is intensive, but there is a fast algorithm
based on dynamic programming (Bai & Perron, 2003).



Testing for a Known Number of Breaks

Consider the following hypothesis,

H0 : m = 0, H1 : m = m∗.

I Let X1 = (x1, . . . , xT1−1)
′, X2 = (xT1 , . . . , xT2−1)

′,...,
Xm∗+1 = (xTm∗ , . . . , xn)

′, where T = {T1, . . . ,Tm∗} is an
unknown partition.

I Let X = diag(X1, . . . ,Xm∗+1) and β = (β′
1, . . . , β

′
m∗+1)

′.
Then the unrestricted model is

Y = Xβ + u.

I Now define θj = βj − βj−1, j = 2, . . . ,m∗ + 1, and let
θ = (θ′2, . . . , θ

′
m∗+1)

′. Then the above hypothesis is equivalent
to

H0 : θ = 0, H1 : Otherwise.



Testing for a Known Number of Breaks

There exists a matrix R such that Rβ = θ. Hence the Wald
statistic is

W (T ) =
(
Rβ̂

)′ {
s2

[
R(X ′X )−1R ′]}−1

(
Rβ̂

)
,

where s2 = û′û/(n − (m∗ + 1)p), and β̂, û, and X are all
dependent on the partition T = {T1, . . . ,Tm∗}.
I The SupW statistic can be constructed as usual,

SupW = sup
T

W (T )/(m∗p) = W (T̂ )/(m∗p),

where T̂ is the estimated partition obtained by minimizing the
SSR of the unrestricted regression.

I We reject the null hypothesis (m = 0) if SupW is sufficiently
large.



Testing for an Unknown Number of Breaks
It is obviously better to state the alternative hypothesis as the
existence of an unknown number of breaks, something like this:

H0 : m = 0, H1 : m > 0.

The double maximum tests proposed in Bai and Perron (1998) is a
natural choice. Let Tm be any partition when the number of breaks
is m. One version of the double maximum test statistic is called
“equally weighted double maximum test”,

UDMax = max
m≤M

SupW (m) = max
m≤M

sup
Tm

W (Tm)/(mp).

I It is assumed that the number of breaks is bounded (with the
upper bound M).

I If UDMax is sufficiently large, then the null hypothesis of no
breaks is rejected.

I When the null hypothesis is rejected, the number of breaks is
unknown and needs to be estimated in most applications.



A Test of ℓ versus ℓ+ 1 Breaks
One way to determine the number of breaks is to test whether there is an
additional break, given the fact we have established that there are ℓ breaks,

H0 : m = ℓ, H1 : m = ℓ+ 1.

I Under the null hypothesis, the restricted model has ℓ breaks, which we
can estimate by minimizing the SSR,

T̂ℓ = argminT1,...,Tℓ
SSR(T1, . . . ,Tℓ).

I The unrestricted model has ℓ+ 1 breaks. We insert additional break τ
into each segment of T̂ℓ and obtain T̂ℓ+1 that achieves the overall
minimal value of SSR. We reject the null hypothesis if the SSR associated
with T̂ℓ+1 is sufficiently lower than associated with hatTℓ. Specifically, the
test statistic is given by

F (ℓ+ 1|ℓ) = s−2
[
SSR(T̂1, . . . , T̂ℓ)−

min
1≤j≤ℓ+1

inf
τ∈Λj

SSR(T̂1, . . . , T̂j−1, τ, T̂j , . . . , T̂ℓ)

]
,

where Λj is the j-th segment. The distribution of F (ℓ+ 1|ℓ) under H0 is
non-standard but available (Bai and Perron, 1998).

I We may repeatedly apply the test to determine the number of breaks.



The Shrinkage Approach to the Estimation of Breaks
Suppose that the regressor in our model is a scalar,

yt = βtxt + ut .

Since {(βt − βt−1), t = 2, . . . ,T} are mostly zero (assume that
there are a small number of breaks), we solve the following
problem,

min
{βt}

T∑
t=1

(yt − βtxt)
2 + λ

T∑
t=2

|βt − βt−1|.

I If λ = 0, the problem reduces to the least square estimation of
a time-varying-coefficient regression without constraints. If
λ = ∞, the approach forces all consecutive changes in
coefficients to exactly zero, and the problem reduces to OLS.

I With an appropriate value of λ, the approach can force “false
jumps” to exactly zero, while keeping the true ones.

I The above problem is a special case of the fused Lasso
(Tibshirani et al. (2005)).



The Penalized Least Square Estimation
I More generally, we estimate {βt} by minimizing the following

penalized least squares (PLS) objective function

1

n

n∑
t=1

(
yt − β′

txt
)2

+ λ
n∑

t=2

∥βt − βt−1∥ (1)

where λ is a positive tuning parameter and ∥·∥ denotes the
matrix norm.

I If β̂τ ̸= β̂τ−1, then a structural break (change) occurs at τ .
I The above penalized least square is a convex problem, which

can be solved using a general-purpose convex solver (e.g.,
CVX). For more efficient computation, we use the
block-coordinate descent algorithm.

I Choice of λ
I Trial and error.
I More systematically, we may choose λ by minimizing some

information criterion. For example,

IC (λ) = log(σ̂2
λ) + n−1/2p (m̂λ + 1) .
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