Statistical Testing on Linear Regression

Junhui Qian

October 26, 2018

Outline

Introduction

- Single Test
 - Two-Sided Test
 - One-Sided Test
- Multiple Test
- Large Sample Inference
- The Lagrange Multiplier Test

OK, we have estimated a model,

LOG(INCOME) = 7.3074 + 0.15974 * EDU - 0.002961 * EXPR

What do you learn from the model?

Are you sure?

Statistical Testing

- Statistical inference is to draw statistical conclusions from a model.
- An example of "statistical conclusion" is

I'm not sure, but the return to education is probably positive.

The Null Hypothesis and the Alternative Hypothesis

Statistical testing based on a model. In our case, the model is

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u.$$

➤ Conjecture: from theory, propose a hypothesis (H₀) and an alternative hypothesis (H₁). For example,

$$\mathbf{H}_0: \beta_1 = \mathbf{0} \quad \mathbf{H}_1: \beta_1 \neq \mathbf{0}.$$

- Refutation: estimate β₁ using data; reject H₀ if β₁ is too far away from 0.
- This framework was developed by Ronald Fisher, Jerzy Neyman, Egon Pearson.
- Karl Popper (1963): Conjectures and Refutations, The Growth of Scientific Knowledge

Outline

- Introduction
- Single Test
 - Two-Sided Test
 - One-Sided Test
- Multiple Test
- Large Sample Inference
- The Lagrange Multiplier Test

t Test

When we our hypothesis concerns only one parameter, say,

$$\mathrm{H}_{0}:\beta_{1}=b\quad \mathrm{H}_{1}:\beta_{1}\neq b.$$

We use the following statistic:

$$t_{\hat{\beta}_1} = \frac{\hat{\beta}_1 - b}{\operatorname{se}(\hat{\beta}_1)},$$

where $se(\hat{\beta}_1)$ is the standard error of $\hat{\beta}_1$.

Standard Error

• The variance matrix of
$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k)'$$
 is given by
 $\Sigma_{\hat{\beta}} = \hat{\sigma}^2 (X'X)^{-1},$

where

$$\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n \hat{u}_i^2 = \frac{1}{n-k-1} \sum_{i=1}^n (y_i - x_i'\hat{\beta})^2.$$

- The standard error of $\hat{\beta}_1$ is the square root of the (2, 2) element of the matrix $\Sigma_{\hat{\beta}}$.
- Using matrix language,

$$\operatorname{se}(\hat{eta}_1) = \sqrt{e_2' \Sigma_{\hat{eta}} e_2},$$

where $e_2 = (0, 1, 0, ..., 0)'$.

Back to Our Example

$$LOG(INCOME) = 7.31 + 0.160 * EDU - 0.00296 * EXPR$$

(0.0462) (0.00311) (0.00127)
 $n = 5778, R^2 = 0.37$

Suppose we want to test

H₀:
$$\beta_1 = 0$$
 H₁: $\beta_1 \neq 0$.
 $t_{\hat{\beta}_1} = \frac{0.160 - 0}{0.00311} = 51.4$

Distribution of $t_{\hat{\beta}_1}$

- The question is, is 51.4 far enough from 0, so that we can reject H₀?
- We need to know the distribution of $t_{\hat{\beta}_1}$ if H_0 is true.
- If we know this distribution and 51.4 appears in the thin tail of it, we can reject H_0 .
- More formally, with this distribution, we can find a critic value c^* such that we reject H_0 if $|\hat{\beta}_1| > c^*$.

Distribution of $t_{\hat{\beta}_1}$

Suppose our model is

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u.$$

and our hypothesis is

$$\mathbf{H}_{0}:\beta_{1}=b\quad \mathbf{H}_{1}:\beta_{1}\neq b.$$

Then

$$t_{\hat{\beta}_1} = \frac{\hat{\beta}_1 - b}{\operatorname{se}(\hat{\beta}_1)} \sim t_{n-k-1},$$

where n - k - 1 is the degree of freedom.

t Distribution

t distribution is also called "Student's t distribution", is the distribution of the ratio

$$t_m = \frac{Z}{\sqrt{\chi_m^2/m}}$$

where Z is $N(0,1), \chi_m^2$ is chi-square distribution with m degree of freedom, and Z and χ^2 are independent.

• When $m \to \infty$, $t_{\infty} \sim N(0, 1)$.

χ^2 Distribution

If $Z_1, ..., Z_m$ are *m* iid N(0, 1) random variables, then

$$Q = \sum_{i=1}^m Z_i^2 \sim \chi_m^2$$

where m is called the degrees of freedom.

$$\blacktriangleright \mathbb{E}Q = m, \operatorname{var}(Q) = 2m.$$

- If $X = (X_1, ..., X_n)'$ is zero-mean multivariate normal, i.e., $X \sim N(0, \Sigma)$, where Σ is invertible, then $X'\Sigma^{-1}X \sim \chi_n^2$.
- ► Let $Z = (Z_1, ..., Z_n)' \sim N(0, I_n)$. If P is an m-dimensional orthogonal projection, $m \leq n$, then $Z'PZ \sim \chi_m^2$.

χ^2 Distribution

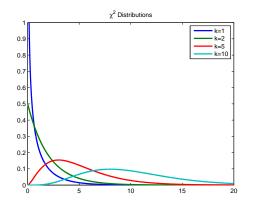


Figure: χ^2 Distribution

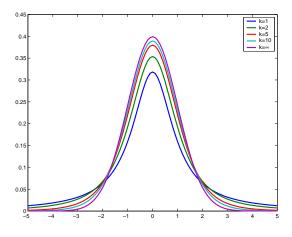


Figure: Student t distributions

Critical Value

The critical value is determined by the

$$\mathbb{P}(|t| > c^*) = \alpha,$$

or

$$[1 - F(c^*)] \cdot 2 = \alpha,$$

where F is the (cumulative) distribution function of $t_{\hat{\beta}_1}$ under H_0 and α is the significance level.

Size of Test

- ln practice, we usually choose α to be 0.05.
- This means, if we reject H₀ based on c*, there is 5% chance in that we may be wrong.
- Obviously, the smaller α is, the stronger our conclusion is.
- α is also called "size" of the test. It is the probability of rejecting a correct hypothesis.

Critical Value for t_{10}

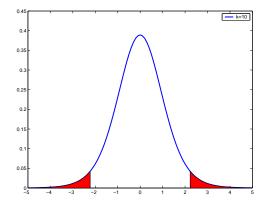


Figure: 95%-significance critical value for two-sided *t* tests with 10 degree of freedom. $c^* = 2.23$.

Critical Value for t_{∞}

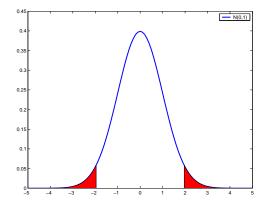


Figure: 95%-significance critical value for N(0, 1). $c^* = 1.96$.

Back to Our Example

$$LOG(INCOME) = 7.31 + 0.160 * EDU - 0.00296 * EXPR$$

(0.0462) (0.00311) (0.00127)
$$n = 5778, R^{2} = 0.37$$

We want to test

$$\mathbf{H}_{\mathbf{0}}:\beta_{\mathbf{1}}=\mathbf{0}\quad \mathbf{H}_{\mathbf{1}}:\beta_{\mathbf{1}}\neq\mathbf{0}.$$

- Calculate the *t* statistic, $t_{\hat{\beta}_1} = \frac{0.160 0}{0.00311} = 51.4$
- The degree of freedom is 5775, which may be regarded as infinity.
- Hence the critical value is $c^* = 1.96$.
- ▶ Since $t_{\hat{\beta}_1} > c^*$, H₀ is rejected at 95% significance level.

p-value

- p-value is the probability of obtaining a statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis holds.
- For the t-test studied above,

$$egin{array}{rcl} m{
hov} &=& \mathbb{P}(|t|>|t_{\hat{eta}}|) \ &=& 2[1-F(|t_{\hat{eta}}|)], \end{array}$$

where F is the cumulative distribution function of the t-statistic.

• The smaller pv is, the stronger we reject H_0 .

p-value for two-sided t test

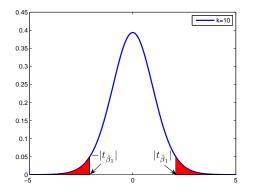


Figure: p-value is the probability mass of the red area, ie, $\mathbb{P}(|t| > |t_{\hat{\beta}_1}|)$.

Back to Our Example

$$LOG(INCOME) = 7.31 + 0.160 * EDU - 0.00296 * EXPR$$

(0.0462) (0.00311) (0.00127)
$$n = 5778, R^{2} = 0.37$$

We want to test

$$\mathbf{H}_0: \beta_2 = 0 \quad \mathbf{H}_1: \beta_2 \neq 0.$$

- Calculate the *t* statistic, $t_{\hat{\beta}_2} = \frac{-0.00296 0}{0.00127} = -2.3307$
- Since n k 1 is huge, $t_{\hat{\beta}_2} \sim N(0, 1)$.
- Hence the p-value is 2(1 Φ(2.3307)) = 0.02, where Φ is cdf of N(0, 1).
- Since 0.02 < 0.05, H₀ is rejected at 95% significance level.

Compare critical-value and p-value approaches

- Both approaches are equivalent.
- p-value indicates how strong the conclusion is.
- ▶ In practice, both t-statistic and p-value are routinely reported.

Confidence Interval

Consider

$$t_{\hat{eta}} = rac{\hat{eta} - eta}{\operatorname{se}(\hat{eta})},$$

where β is the true value. Since $t_{\hat{\beta}}$ is symmetrically distributed, we can always find a constant $c_{\alpha/2}$ such that

$$\mathbb{P}(|t_{\hat{\beta}}| \le c_{\alpha/2}) = 1 - \alpha.$$
(1)

The constant $c_{\alpha/2}$ is nothing but $|Q_{\alpha/2}|$, or $Q_{1-\alpha/2}$, the $(1-\alpha/2)$ -quantile of the distribution of $t_{\hat{\beta}}$. From (1) we obtain confidence interval for β :

$$eta \in [\hat{eta} - c_{lpha/2} \mathrm{se}(\hat{eta}), \hat{eta} + c_{lpha/2} \mathrm{se}(\hat{eta})].$$

Confidence Interval

- 1 α is the confidence level of the CI. It is the frequency that the observed interval contains the true parameter in repeated sampling.
- CI is related with hypothesis testing. Every point in CI can be regarded as no different, in statistical sense, than the true value.
- CI is an interval for the true parameter, not for the estimator. It is a type of interval estimate (in contrast to point estimate) of a population parameter.
- Given a sample and a confidence level 1 α, we "observe" a Cl, the width of which is used to indicate the reliability of a particular point estimate.

Back to Our Example

$$LOG(INCOME) = 7.31 + 0.160 * EDU - 0.00296 * EXPR$$

(0.0462) (0.00311) (0.00127)
$$n = 5778, R^2 = 0.37$$

We want to test $H_0: \beta_2 = 0$ $H_1: \beta_2 \neq 0$.

- Since n k 1 is huge, $t_{\hat{\beta}_2} \sim N(0, 1)$.
- The 0.975-quantile of N(0,1) is 1.96.
- Then the confidence interval for β_2 is

$$\begin{split} & [-0.00296 - 1.96 \cdot 0.00127, -0.00296 + 1.96 \cdot 0.00127] \\ & = [-0.0054, -0.0005] \end{split}$$

Outline

- Introduction
- Single Test
 - Two-Sided Test
 - One-Sided Test
- Multiple Test
- Large Sample Inference
- The Lagrange Multiplier Test

One-Sided Alternative Hypothesis

 Sometimes we have strong prior belief on the sign of a parameter. For example, in the model of income determination,

 $LOG(INCOME) = \beta_0 + \beta_1 EDU + \beta_2 EXPR,$

we may hypothesize that β_1 can never be negative.

In this case, we should form our hypothesis as

$$H_0: \beta_1 = 0 \quad H_1: \beta_1 > 0.$$

- The above test is called a "one-sided test".
- More generally, a one-sided test is of the following form,

$$\mathbf{H}_0: \beta_1 = b \quad \mathbf{H}_1: \beta_1 > b.$$

Critical Value of One-Sided Test

Let the hypothesis be,

$$\mathrm{H}_{0}:\beta=b\quad \mathrm{H}_{1}:\beta>b.$$

The critical value is determined by the

$$\mathbb{P}(t > c^*) = \alpha,$$

or

$$1 - F(c^*) = \alpha,$$

where F is the distribution function of $t_{\hat{\beta}}$ under H₀ and α is the significance level.

Critical Value of One-Sided Test

What if the hypothesis is,

$$\mathrm{H}_{0}: \beta = b \quad \mathrm{H}_{1}: \beta < b ?$$

The critical value is determined by the

 $\mathbb{P}(t < c^*) = \alpha,$

or

$$F(c^*) = \alpha,$$

where F is the distribution function of $t_{\hat{\beta}}$ under H₀ and α is the significance level.

p-value of One-Sided Test

The p-value is obtained by the

$$pv = \mathbb{P}(t > t_{\hat{\beta}}),$$

or

$$pv = 1 - F(t_{\hat{\beta}}),$$

where F is the distribution function of the t-statistic under H_0 .

p-value of One-Sided Test

What if the hypothesis is,

 $H_0: \beta = b \quad H_1: \beta < b ?$

The p-value is obtained by the

$$pv = \mathbb{P}(t < t_{\hat{\beta}}),$$

or

$$pv = F(t_{\hat{\beta}}),$$

where F is the distribution function of the t-statistic under H_0 .

Back to Our Example

$$LOG(INCOME) = 7.31 + 0.160 * EDU - 0.00296 * EXPR$$

(0.0462) (0.00311) (0.00127)
$$n = 5778, R^{2} = 0.37$$

We want to test

$$\mathbf{H}_0: \beta_2 = \mathbf{0} \quad \mathbf{H}_1: \beta_2 < \mathbf{0}.$$

- Calculate the *t* statistic, $t_{\hat{\beta}_2} = \frac{-0.00296 0}{0.00127} = -2.3307$
- Since n k 1 is huge, $t_{\hat{\beta}_2} \sim N(0, 1)$.
- Hence the p-value is $\mathbb{P}(t < t_{\hat{\beta}_2}) = \Phi(-2.33) = 0.01$, where Φ is cdf of N(0, 1).
- Since 0.01 < 0.05, H₀ is rejected at 95% significance level.

Some may argue that the return to university education is the same as that to advanced professional schools (aps, $\pm \pm$). To test this hypothesis, we can write a model as

$$\log(wage) = \beta_0 + \beta_1 aps + \beta_2 university + \beta_3 expr + u.$$

And the hypothesis is whether one year at an advanced professional school is worth one year at a university. This is

$$\mathbf{H}_{0}:\beta_{1}=\beta_{2}\quad \mathbf{H}_{1}:\beta_{1}\neq\beta_{2}.$$

Multi-Parameter Single Tests

- Tests like H₀ : β₁ = β₂ involve more than one parameters, but only one relationship between parameters. We call such tests as multi-parameter single tests.
- Question: Is $H_0: \beta_1 = \beta_2 = \beta_3$ multi-parameter single tests?

t-statistic

We can rewrite the hypothesis as

$$\mathrm{H}_{0}:\beta_{1}-\beta_{2}=0\quad\mathrm{H}_{1}:\beta_{1}-\beta_{2}\neq0.$$

And use the t-statistic:

$$t_{\hat{\beta}_1-\hat{\beta}_2} = \frac{\hat{\beta}_1-\hat{\beta}_2}{\operatorname{se}(\hat{\beta}_1-\hat{\beta}_2)}.$$

• The problem becomes, how do we calculate $se(\hat{\beta}_1 - \hat{\beta}_2)$?

The Standard Error

• We can calculate the variance of $(\hat{eta}_1 - \hat{eta}_2)$ by

$$\operatorname{var}(\hat{\beta}_1 - \hat{\beta}_2) = \operatorname{var}(\hat{\beta}_1) + \operatorname{var}(\hat{\beta}_2) - 2\operatorname{cov}(\hat{\beta}_1, \hat{\beta}_2).$$

In matrix language, suppose β̂ = (β̂₁, β̂₂)' and var(β̂) = Σ, we have

$$\hat{\beta}_1 - \hat{\beta}_2 = (1 - 1) \cdot \hat{\beta}.$$

Hence

$$\operatorname{var}(\hat{\beta}_1 - \hat{\beta}_2) = (1 - 1)\Sigma \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \operatorname{var}(\hat{\beta}_1) + \operatorname{var}(\hat{\beta}_2) - 2\operatorname{cov}(\hat{\beta}_1, \hat{\beta}_2).$$

Outline

Introduction

- Single Test
 - Two-Sided Test
 - One-Sided Test
- Multiple Test
- Large Sample Inference
- The Lagrange Multiplier Test

A Typical Example

Some may argue that the return to any higher education is zero, whether it is universities or advanced professional schools. This hypothesis can be written as

$$\mathrm{H}_{0}:\beta_{1}=\beta_{2}=0.$$

The alternative is: At least one parameter, β_1 or β_2 , is nonzero.

The above test is a multi-parameter multiple test, which involves more than one parameters and more than one hypotheses (or "restrictions").

Number of Restrictions

- One hypothesis (such as β₁ = 0) is a restriction that your conjecture imposes on the model.
- Count the number of restrictions for the following hypotheses:

•
$$H_0: \beta_1 = \beta_2 = \beta_3$$

• $H_0: \beta_1 + \beta_2 = 1$
• $H_0: \beta_1 = \beta_2 = 0$

Restricted Model

- Suppose the hypotheses hold, we can rewrite our model with restrictions imposed. This would obtain the "restricted model".
- For example, suppose our model is

 $log(wage) = \beta_0 + \beta_1 aps + \beta_2 university + \beta_3 expr + u,$

and suppose the following hypotheses hold,

 $\mathrm{H}_{0}:\beta_{1}=\beta_{2}=0.$

The restricted regression model is then

$$log(wage) = \beta_0 + \beta_3 expr + u.$$

Write the restricted models for the following hypotheses:

F Statistic

Let the number of restrictions (hypotheses) be j, the number of total observations be n, the number of regressors k. And denote SSR_R the SSR of the restricted regression, denote SSR_U the SSR of the unrestricted regression. The famed "F Statistic" is given by

$$F = \frac{(SSR_R - SSR_U)/j}{SSR_U/(n-k-1)}.$$

Or equivalently,

$$F = \frac{\left(R_U^2 - R_R^2\right)/j}{\left(1 - R_U^2\right)/(n - k - 1)}.$$

F Distribution

If $V_1 \sim \chi^2_{m_1}$, $V_2 \sim \chi^2_{m_2}$, and V_1 and V_2 are independent, then

$$F = rac{V_1/m_1}{V_2/m_2} \sim F_{m_1,m_2}.$$

- m₁ is called the numerator degrees of freedom and m₂ the denominator degrees of freedom.
- m_1 and m_2 control the shape of the distribution.

•
$$\mathbb{E}F = m_2/(m_2 - 2)$$
 for $m_2 > 2$.

• If
$$t \sim t_m$$
, then $t^2 \sim F_{1,m}$.

F Distribution

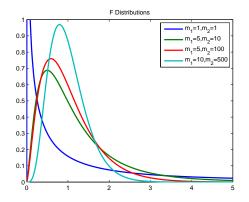


Figure: F Distribution

- ► If the null hypotheses hold, and if the CLR Assumptions (1)-(6) hold, F is distributed as F distribution with j numerator degrees of freedom and n - k - 1 denominator degrees of freedom, F_{i,n-k-1}.
- ▶ If the null hypotheses do not hold, then SSR_R − SSR_U should be large. We reject the hypotheses if F is large enough.

Derivation

We can show that

$$V_1 = \frac{SSR_R - SSR_U}{\sigma^2} \sim \chi_j^2$$
$$V_2 = \frac{SSR_U}{\sigma^2} \sim \chi_{n-k-1}^2,$$

and V_1 and V_2 are independent. Hence

$$F = \frac{(SSR_R - SSR_U)/j}{SSR_U/(n-k-1)}$$

is indeed distributed as $F_{j,n-k-1}$.

Critical Value and p-value

▶ The critical value *c*^{*} is obtained by

$$\mathbb{P}(f > c^*) = \alpha,$$

where α is the size of the test.

The p-value is obtained by

$$pv = \mathbb{P}(f > F).$$

An Application of F Test: Significance of a Model

Suppose our model is

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u.$$

The test of the overall significance of the model is the test of the following hypothesis

$$\begin{array}{lll} \mathrm{H}_{0} & : & \beta_{1} = \cdots = \beta_{k} = 0 \\ \mathrm{H}_{1} & : & \mathrm{At \ least \ one \ of \ the \ } \beta' s \ \mathrm{is \ nonzero} \end{array}$$

An Application of F Test: Significance of a Model

The restricted model is

$$y=\beta_0+u.$$

The SSR of this model is nothing but SST of the original model,

$$SSR_R = SST = \sum_{i=1}^n (y_i - \bar{y})^2.$$

Hence the F statistic for the overall significance test of the model is

$$F = \frac{(SST - SSR)/k}{SSR/(n-k-1)}.$$

This test is routinely reported in econometric softwares.

An Application of F Test: Granger Causality

- Granger causality means that if x causes y, the x is a useful predictor of y_t.
- Consider the model

$$y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_p y_{t-p} + \gamma_1 x_{t-1} + \dots + \gamma_q x_{t-q} + u_t.$$

The Granger Causality Test is formulated as follows,

 $H_0: \gamma_1 = \cdots = \gamma_q = 0$ $H_1:$ At least one of $\gamma's$ is nonzero.

Outline

Introduction

- Single Test
 - Two-Sided Test
 - One-Sided Test
- Multiple Test
- Large Sample Inference
- The Lagrange Multiplier Test

When sample size becomes large

- When sample size becomes large, the normality assumption is not required for making inferences.
- Recall law of large numbers for random vectors.
- Central limit theorem for random vectors. Let ξ₁,..., ξ_n be an iid sample with mean zero and a well-defined covariance matrix Σ_ξ. The CLT dictates that

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\xi_{i}\rightarrow_{d}N(0,\Sigma_{\xi}).$$

The Asymptotic t Test

Assume $\mathbb{E}x_i x'_i = Q$. Using CLT, we can show that

$$\sqrt{n}(\hat{\beta}-\beta) \rightarrow_d N(0,\sigma^2 Q^{-1}).$$

From this it is easy to see that for a test H₀ : β₁ = b, the corresponding t statistic

$$\frac{\hat{\beta}_1-b}{\operatorname{se}(\hat{\beta}_1)}\to_d N(0,1).$$

Case Study: Asymptotic Approximation

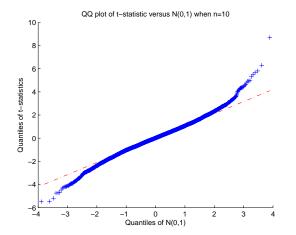
We generate data as follows,

$$y_i = 1 + 2x_i + u_i, \quad i = 1, \dots, n$$

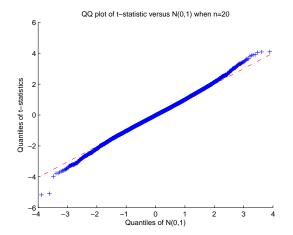
where $x_i \sim N(0, 1)$ and $u_i = e_i - 1$ with $e_i \sim \text{Exponential}(1)$.

- We calculate the t-statistic of the slope parameter, $t = (\hat{\beta}_1 - 2)/\operatorname{se}(\hat{\beta}_1).$
- Repeat the experiment for 10000 times and compare the distribution of t's with the standard normal distribution (N(0,1)).

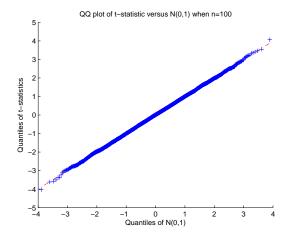
Asymptotic Approximation When n = 10



Asymptotic Approximation When n = 20



Asymptotic Approximation When n = 100



How Big is Big Enough?

- The asymptotic distribution describes the statistic distribution of a statistic when the sample size n goes to infinity.
- In practice, it serves as an approximation to the finite-sample distribution, which is usually very complicated. The bigger n is, the better the approximation is.
- In many applications where the length of data is short, the asymptotic distribution is still used for the lack of better alternatives.

The Asymptotic F Test

The usual F statistic still works,

$$F = rac{(SSR_R - SSR_U)/j}{SSR_U/(n-k-1)}
ightarrow_d F_{j,\infty}.$$

Note that $F_{j,\infty}$ is identical with χ_i^2 .

Outline

- Introduction
- Single Test
 - Two-Sided Test
 - One-Sided Test
- Multiple Test
- Large Sample Inference
- The Lagrange Multiplier Test

The Lagrange Multiplier Test

- The usual F test needs to run both restricted and unrestricted regressions. The LM test needs only the restricted regression.
- Suppose for the hypothesis $H_0: \beta_{k-m+1} = \beta_{k-m+2} = \cdots = \beta_k = 0$, we run the restricted regression y on x_1, \cdots, x_{k-m} and obtain the residual \tilde{u}
- ▶ Run an auxiliary regression of, ũ on x_{k-m+1}, · · · , x_k and obtain the R².
- ▶ We can show that under the H₀,

$$LM = nR^2 \to_d \chi_m^2.$$

Example: Testing for Heteroscedasticity

- A direct application of the LM test is to test for heteroscedasticity.
- We state the null hypothesis as

$$\mathrm{H}_{0}:\mathbb{E}(u|x_{1},...,x_{k})=\sigma^{2}.$$

- The alternative is that there exists heteroscedasticity, of which the form we don't know.
- Hence it is best to use LM test, which requires the estimation of the restricted model only.

Breusch-Pagan Test

- We first assume homoscedasticity, run OLS on the restricted model, and obtain the residual û.
- Then we run the auxiliary regression,

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \dots + \delta_k x_k + v$$

and obtain the R^2 .

The LM statistic is thus

$$LM = nR^2 \to_d \chi_k^2.$$

This procedure implicitly assumes that if u² is dependent on x at all, the dependence is linear.

When there is heteroscedasticity

- The OLS estimator is still unbiased and consistent, albeit not efficient.
- But the usual estimator for var(β̂_i) is wrong, posing problems for t tests.

The Naive Regression Case

Suppose we have a naive linear regression

$$y_i = \beta x_i + u_i,$$

on which the CLR Assumption (1)-(4) hold but there exists heteroscedasticity, ie,

$$\operatorname{var}(u_i) = \sigma_i^2.$$

Variance of $\hat{\beta}$ in Naive Regression

We have

$$\hat{\beta} = \beta + \frac{\sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2}.$$

Hence

$$\operatorname{var}(\hat{\beta}|X) = \frac{\sum_{i=1}^{n} x_i^2 \sigma_i^2}{\left(\sum_{i=1}^{n} x_i^2\right)^2}.$$

If homoscedasticity holds, this reduces to

$$\frac{\sigma^2}{\sum_{i=1}^n x_i^2} = \sigma^2 (X'X)^{-1}.$$

The White Procedure for Naive Regression

 White (1980) proposes to estimate heteroscedasticity-robust variance by

$$\operatorname{var}(\hat{\beta}) = rac{\sum_{i=1}^{n} x_i^2 \hat{u}_i^2}{\left(\sum_{i=1}^{n} x_i^2\right)^2},$$

where \hat{u}_i is the OLS residual.

- It can be proved that $var(\hat{\beta})$ is consistent.
- The White heteroscedasticity-robust standard error is defined as the square root of vâr(β̂).

The White Heteroscedasticity-Robust t Test for Naive Regression

We can define the heteroscedasticity-robust t statistic as

$$t_{\hat{\beta}} = \frac{\hat{\beta} - b}{\text{hese}(\hat{\beta})},$$

where $hese(\hat{\beta})$ is the White heteroscedasticity-robust standard error.

- It can be shown that $t_{\hat{\beta}} \rightarrow_d N(0,1)$.
- The White heteroscedasticity-robust t test works in large samples.

Now we consider a multiple linear regression

$$y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_1 x_{ik} + u_i,$$

on which the CLR Assumption (1)-(4) hold but there exists heteroscedasticity, ie,

$$\operatorname{var}(u_i) = \sigma_i^2.$$

Matrix Notation

Recall that we define

$$x_{i} = \begin{pmatrix} 1 \\ x_{i1} \\ \vdots \\ x_{ik} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix}.$$

Hence we can rewrite the general linear regression as

$$y_i = x_i'\beta + u_i$$

Variance Matrix of $\hat{\beta}$

We have

$$\hat{\beta} = \beta + \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \left(\sum_{i=1}^{n} x_i u_i\right).$$

Hence

$$\operatorname{var}(\hat{\beta}|X) = \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \sum_{i=1}^{n} x_i x_i' \sigma_i^2 \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1}.$$

If homoscedasticity holds, this reduces to

$$\sigma^2\left(\sum_{i=1}^n x_i x_i'\right)^{-1} = \sigma^2 (X'X)^{-1}.$$

The White Procedure

We can estimate heteroscedasticity-robust variance by

$$\hat{var}(\hat{\beta}) = \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \sum_{i=1}^{n} x_i x_i' \hat{u}_i^2 \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1},$$

where \hat{u}_i is the OLS residual.

- It can be proved that $var(\hat{\beta})$ is consistent.
- The White heteroscedasticity-robust standard errors are defined as the square root of the diagonal elements of vâr(\u00f3).

Summary: The Steps of Statistical Testing

- Propose a null hypothesis and an alternative hypothesis from some theory.
- Construct a test statistic for the hypotheses.
- Establish the distribution of the statistic.
- We calculate the statistic using observed data.
- If the value of the statistic is far in the tails of the distribution, we say it is too far away from conjectured value. Hence we reject our hypothesis.
- ▶ With large sample, we do not need the normality Assumption.
- With large sample, it is always advisable to use heteroscedasticity-robust standard errors in constructing t statistics.