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An Important Question

OK, we have estimated a model,

LOG(INCOME) = 7.3074 + 0.15974 « EDU — 0.002961 « EXPR

» What do you learn from the model?

» Are you sure?



Statistical Testing

» Statistical inference is to draw statistical conclusions from a
model.

» An example of “statistical conclusion” is

I'm not sure, but the return to education is probably positive.




The Null Hypothesis and the Alternative Hypothesis
Statistical testing based on a model. In our case, the model is

y = fo+ Bix1 + -+ Brxk + u.

» Conjecture: from theory, propose a hypothesis (Hp) and an
alternative hypothesis (Hj). For example,

Ho:B81=0 Hp:p1#0.

P> Refutation: estimate (1 using data; reject Hy if 31 is too far
away from 0.

» This framework was developed by Ronald Fisher, Jerzy
Neyman, Egon Pearson.

» Karl Popper (1963): Conjectures and Refutations, The
Growth of Scientific Knowledge
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t Test

When we our hypothesis concerns only one parameter, say,
Ho:B1=b Hi:p1#b.

We use the following statistic:

_bi-b
7 se(Br)

where se(Bl) is the standard error of 31.



Standard Error

> The variance matrix of 3 = (30,31, ...,Bk)’ is given by
Y5 =6%(X'X)",

where

n n

1 1 "
A2_7 I\'2:7 i / 2.
o 7n_k_1§ ul n—k—].E (yl Xlﬁ)

i= i=1

> The standard error of 53 is the square root of the (2,2)
element of the matrix ¥ 5.

» Using matrix language,

se(B1) = /&% e,

where e, = (0,1,0,...,0)".



Back to Our Example

LOG(INCOME) = 7.31 + 0.160 % EDU — 0.00296 * EXPR
(0.0462) (0.00311) (0.00127)
n=5778,R> = 0.37

Suppose we want to test

Hoi,@lzo H12,317£0_

01600

tp = ———— =514
A1 0.00311 >



Distribution of ty,

» The question is, is 51.4 far enough from 0, so that we can
reject Ho?
» We need to know the distribution of ts, if Hg is true.

> If we know this distribution and 51.4 appears in the thin tail
of it, we can reject Hp.

» More formally, with this distribution, we can find a critic value
c* such that we reject Hy if |51] > ¢*.



Distribution of ty,

Suppose our model is
y = Bo+ Bixt + -+ Brxk + u.
and our hypothesis is
Ho:pB1=b Hy:pB1#b.

Then

o Br—b
B1 se(ﬂAl)

where n — k — 1 is the degree of freedom.

~ th_k—1,



t Distribution

» t distribution is also called “Student’s t distribution”, is the
distribution of the ratio

7
VxG/m'

where Z is N(0,1),x?2, is chi-square distribution with m degree
of freedom, and Z and x? are independent.

» When m — oo, to ~ N(0,1).

tm =



x? Distribution

If Z1,..., Zy are miid N(0,1) random variables, then

m

Q=) Z}~xi
i=1
where m is called the degrees of freedom.
> EQ = m, var(Q) = 2m.
> If X =(X1,...,X,) is zero-mean multivariate normal, i.e.,
X ~ N(0,%), where ¥ is invertible, then X'Z 71X ~ x2.
> Let Z=(Z4,...,2Z,) ~ N(0O,1,). If Pis an m-dimensional
orthogonal projection, m < n, then Z'PZ ~ x2..



x? Distribution
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Figure: Student t distributions



Critical Value

The critical value is determined by the
B(t| > ¢*) = o,

or
- F(c)] 2=a,

where F is the (cumulative) distribution function of t; under Ho
and « is the significance level.



Size of Test

P In practice, we usually choose o to be 0.05.

» This means, if we reject Hy based on c*, there is 5% chance
in that we may be wrong.

» Obviously, the smaller « is, the stronger our conclusion is.

» « is also called “size” of the test. It is the probability of
rejecting a correct hypothesis.



Critical Value for ty
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Figure: 95%-significance critical value for two-sided t tests with 10
degree of freedom. c* = 2.23.



Critical Value for t.,
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Figure: 95%-significance critical value for N(0,1). ¢* = 1.96.



Back to Our Example

LOG(INCOME) = 731 + 0.160 x EDU — 0.00296 + EXPR
(0.0462) (0.00311) (0.00127)
n=5778, R?> = 0.37

We want to test

Ho:81=0 Hi:p1#0.

» Calculate the t statistic, tBl = %’%%%If =514

P> The degree of freedom is 5775, which may be regarded as
infinity.

» Hence the critical value is ¢* = 1.96.

» Since tg > c*, Hg is rejected at 95% significance level.



p-value

> p-value is the probability of obtaining a statistic at least as
extreme as the one that was actually observed, assuming that
the null hypothesis holds.

» For the t-test studied above,

pv = B(lt| > [ty])
— 21— F(ty))],

where F is the cumulative distribution function of the
t-statistic.

> The smaller pv is, the stronger we reject Hg.



p-value for two-sided t test
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Figure: p-value is the probability mass of the red area, ie, P(|t| > |t |).



Back to Our Example

LOG(INCOME) = 731 + 0.160 x EDU — 0.00296 + EXPR
(0.0462) (0.00311) (0.00127)
n=5778, R?> = 0.37

We want to test

Ho:5=0 Hp:p#0.

» Calculate the t statistic, t/3’2 = % = —2.3307

> Since n— k —1is huge, tz ~ N(0,1).

» Hence the p-value is 2(1 — $(2.3307)) = 0.02, where & is cdf
of N(0,1).

» Since 0.02 < 0.05, Hg is rejected at 95% significance level.



Compare critical-value and p-value approaches

» Both approaches are equivalent.
» p-value indicates how strong the conclusion is.

» In practice, both t-statistic and p-value are routinely reported.



Confidence Interval

Consider

@

tB = _,\ﬂ

se(3)

where 3 is the true value. Since ts is symmetrically distributed, we
can always find a constant ¢,/ such that

)

P(Jt5) < cuj2) =1—a (1)
The constant ¢, , is nothing but ‘Qa/2’, or @_q/2, the

(1 — a/2)-quantile of the distribution of t3. From (1) we obtain
confidence interval for :

B e [B - a/286(3)73+ Coz/ZSe(B)]'



Confidence Interval

> 1 — « is the confidence level of the Cl. It is the frequency that
the observed interval contains the true parameter in repeated
sampling.

» Cl is related with hypothesis testing. Every point in Cl can be
regarded as no different, in statistical sense, than the true
value.

» Cl is an interval for the true parameter, not for the estimator.
It is a type of interval estimate (in contrast to point estimate)
of a population parameter.

» Given a sample and a confidence level 1 — «, we “observe” a
Cl, the width of which is used to indicate the reliability of a
particular point estimate.



Back to Our Example

LOG(INCOME) = 7.31 + 0.160 % EDU — 0.00296  EXPR
(0.0462) (0.00311) (0.00127)
n=5778,R* = 0.37

We want to test Hyp : o =0 Hj : (8> #0.
> Since n— k —1is huge, tz ~ N(0,1).
» The 0.975-quantile of N(0,1) is 1.96.

» Then the confidence interval for 5 is

[~0.00296 — 1.96 - 0.00127, —0.00296 + 1.96 - 0.00127]
— [~0.0054, —0.0005]
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One-Sided Alternative Hypothesis

» Sometimes we have strong prior belief on the sign of a
parameter. For example, in the model of income
determination,

LOG(INCOME) = By + B1EDU + B,EXPR,

we may hypothesize that 51 can never be negative.

» In this case, we should form our hypothesis as
Ho:$1=0 Hyp:p>0.

» The above test is called a “one-sided test”.

» More generally, a one-sided test is of the following form,

Ho:681=b H;i:p1>0b.



Critical Value of One-Sided Test

Let the hypothesis be,
Ho:8=b H;:p8>0b.
The critical value is determined by the
P(t > c*) = a,

or
1-F(c") =a,

where F is the distribution function of ts under Hp and « is the
significance level.



Critical Value of One-Sided Test

What if the hypothesis is,
Ho:8=b Hi:8<b?
The critical value is determined by the
P(t < c*) =a,

or
F(c*) = «,

where F is the distribution function of ts under Hp and « is the
significance level.



p-value of One-Sided Test

The p-value is obtained by the
pv =P(t > t3),

or
pv = 1- F(tﬁ)7

where F is the distribution function of the t-statistic under Hp.



p-value of One-Sided Test

What if the hypothesis is,
Ho:B8=b Hi:8<b?
The p-value is obtained by the
pv =P(t < t3),

or
pv = F(t3),

where F is the distribution function of the t-statistic under Hp.



Back to Our Example

LOG(INCOME) = 731 + 0.160 x EDU — 0.00296 + EXPR
(0.0462) (0.00311) (0.00127)
n=5778, R?> = 0.37

We want to test

Ho:B2=0 Hjp: /5 <0.

» Calculate the t statistic, t/3’2 = % = —2.3307

> Since n— k —1is huge, tz ~ N(0,1).
> Hence the p-value is P(t < t; ) = ®(—2.33) = 0.01, where ®
is cdf of N(0,1).

» Since 0.01 < 0.05, Hg is rejected at 95% significance level.



Multi-Parameter Single Tests: A Typical Example

Some may argue that the return to university education is the
same as that to advanced professional schools (aps, X %). To test
this hypothesis, we can write a model as

log(wage) = Bo + B1aps + Pauniversity + [Bzexpr + u.

And the hypothesis is whether one year at an advanced
professional school is worth one year at a university. This is

Ho: 1 =02 Hi:p1# P



Multi-Parameter Single Tests

» Tests like Hg : 51 = (8> involve more than one parameters, but
only one relationship between parameters. We call such tests
as multi-parameter single tests.

» Question: Is Hy : f1 = B2 = 3 multi-parameter single tests?



t-statistic

P> We can rewrite the hypothesis as
Ho: 51 —p2=0 Hyi:p1—p2#0.
» And use the t-statistic:
B bs
Bt T B = )
se(f1 — B2)

» The problem becomes, how do we calculate se(Bl - Bg)?



The Standard Error

» We can calculate the variance of (Bl - Bz) by
var(BAl - Bg) = V&F(Bl) + Var(BAz) - 2cov(31, Bg)

> In matrix language, suppose 3 = (31,32)’ and var(ﬂA) =3, we
have

Br—Pa=(1 —1) B
Hence

N A

(i) = - () = var(Buyvan(a)-2con(Bs ).
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A Typical Example

» Some may argue that the return to any higher education is
zero, whether it is universities or advanced professional
schools. This hypothesis can be written as

Ho: 1 =52=0.

The alternative is: At least one parameter, (31 or 3, is
nonzero.

» The above test is a multi-parameter multiple test, which
involves more than one parameters and more than one
hypotheses (or “restrictions”).



Number of Restrictions

» One hypothesis (such as 51 = 0) is a restriction that your
conjecture imposes on the model.
» Count the number of restrictions for the following hypotheses:

> Ho: B =p2=f3
> Ho: 1+ p2=1
> Ho:81=p2=0



Restricted Model

» Suppose the hypotheses hold, we can rewrite our model with
restrictions imposed. This would obtain the “restricted
model”.

» For example, suppose our model is
log(wage) = Bo + B1aps + Pauniversity + [S3expr + u,
and suppose the following hypotheses hold,
Ho: 1 =52=0.
The restricted regression model is then

log(wage) = Bo + [zexpr + u.



More Examples

Write the restricted models for the following hypotheses:
> Ho:p1=02=03
> Ho:B1+62=1



F Statistic

Let the number of restrictions (hypotheses) be j, the number of
total observations be n, the number of regressors k. And denote
SSRg the SSR of the restricted regression, denote SSRy the SSR
of the unrestricted regression. The famed “F Statistic” is given by

£ _ (SSRg = SSRy)/j
~ SSRy/(n—k—1)

Or equivalently,

(RG — RR) /i
(1-R%)/(n—k-1)

F=



F Distribution

If Vi ~ anl, Vo ~ X?nz, and V; and V5 are independent, then

o V1/m1

F= ~ Fm
1,M2:
Vg/mz

» my is called the numerator degrees of freedom and my the
denominator degrees of freedom.

» my and my control the shape of the distribution.
> EF = my/(my — 2) for my > 2.
> If t ~ tm, then t2 ~ Fy .



F Distribution

F Distributions
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F Test

» If the null hypotheses hold, and if the CLR Assumptions
(1)-(6) hold, F is distributed as F distribution with j
numerator degrees of freedom and n — kK — 1 denominator
degrees of freedom, F; ,_x_1.

» If the null hypotheses do not hold, then SSRr — SSRy should
be large. We reject the hypotheses if F is large enough.



Derivation

We can show that

SSRr — SSRy
o
SSRy
Vo = 2~ Xo—k-1

and Vi and V5, are independent. Hence

(55Rr — SSRy)/j

= SSRy/(n—k—1)

is indeed distributed as Fj ,_x_1.

2

Xj?



Critical Value and p-value

» The critical value c* is obtained by
P(f > c*) = «,

where « is the size of the test.

» The p-value is obtained by

pv =P(f > F).



An Application of F Test: Significance of a Model

Suppose our model is

y = Bo+ Pix1+ -+ Bixk + u.

The test of the overall significance of the model is the test of the
following hypothesis

Ho : Bi=--=5=0
H; : At least one of the 5’s is nonzero



An Application of F Test: Significance of a Model

» The restricted model is

y = Bo+u.

The SSR of this model is nothing but SST of the original

model,
n

SSRr = SST =) (vi—¥)>

i=1
» Hence the F statistic for the overall significance test of the

model is
B (SST — SSR) /k

T SSR/(n—k-1)

» This test is routinely reported in econometric softwares.

F




An Application of F Test: Granger Causality

» Granger causality means that if x causes y, the x is a useful
predictor of y;.

» Consider the model
e = Bo+Brye—1+ -+ BpYr—p +V1Xe—1+ -+ VgXe—g + Ut
The Granger Causality Test is formulated as follows,

Ho:71=---=7=0 H;i: At least one of 7's is nonzero.
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When sample size becomes large

» When sample size becomes large, the normality assumption is
not required for making inferences.

» Recall law of large numbers for random vectors.

» Central limit theorem for random vectors. Let &1,...,&, be an
iid sample with mean zero and a well-defined covariance
matrix X¢. The CLT dictates that

\}B Z f,‘ —d N(O7 25).
i=1



The Asymptotic t Test

> Assume EX,'XI{ = @.Using CLT, we can show that

Vn(B = B) =4 N(0,52Q71).

» From this it is easy to see that for a test Hy : 51 = b, the
corresponding t statistic
b1 — b
b N(0,1).
se(1)




Case Study: Asymptotic Approximation

> We generate data as follows,
vi=1+2xi4+uj, i=1,...,n

where x; ~ N(0,1) and u;j = ¢; — 1 with e; ~ Exponential(1).
> We calculate the t-statistic of the slope parameter,
t = (B1 —2)/se(B1).
» Repeat the experiment for 10000 times and compare the
distribution of t's with the standard normal distribution

(N(0,1)).



Asymptotic Approximation When n = 10

QQ plot of t-statistic versus N(0,1) when n=10
101
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Asymptotic Approximation When n = 20

QQ plot of t-statistic versus N(0,1) when n=20
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Asymptotic Approximation When n = 100

QQ plot of t-statistic versus N(0,1) when n=100
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How Big is Big Enough?

> The asymptotic distribution describes the statistic distribution
of a statistic when the sample size n goes to infinity.

» In practice, it serves as an approximation to the finite-sample
distribution, which is usually very complicated. The bigger n
is, the better the approximation is.

» In many applications where the length of data is short, the
asymptotic distribution is still used for the lack of better
alternatives.



The Asymptotic F Test

The usual F statistic still works,

- _ (SSRg — SSRy)/j

~ SSRy/(n—k—1)

Note that Fj o is identical with x?.

_>d Fj,OO‘
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The Lagrange Multiplier Test

» The usual F test needs to run both restricted and unrestricted
regressions. The LM test needs only the restricted regression.

» Suppose for the hypothesis
Ho : Bk—m+1 = Bk—m+2 = -+ - = Bk = 0, we run the restricted
regression y on xi,--- ,Xk—m and obtain the residual &

» Run an auxiliary regression of, I on Xx_my1,- - , Xk and
obtain the R?.

» We can show that under the Hy,

LM = nR? —4 X2,



Example: Testing for Heteroscedasticity

P> A direct application of the LM test is to test for
heteroscedasticity.

> We state the null hypothesis as

Ho : E(ulx, ..., xx) = 0.

» The alternative is that there exists heteroscedasticity, of which
the form we don't know.

> Hence it is best to use LM test, which requires the estimation
of the restricted model only.



Breusch-Pagan Test

> We first assume homoscedasticity, run OLS on the restricted
model, and obtain the residual .

» Then we run the auxiliary regression,
02 =00+ 01xq 4 -+ Opxx + v

and obtain the R2.
» The LM statistic is thus

LM = nR? =4 x3.

» This procedure implicitly assumes that if u? is dependent on x
at all, the dependence is linear.



When there is heteroscedasticity

» The OLS estimator is still unbiased and consistent, albeit not
efficient.

» But the usual estimator for var(ﬁA,-) is wrong, posing problems
for t tests.



The Naive Regression Case

Suppose we have a naive linear regression
yi = Bxi + uj,

on which the CLR Assumption (1)-(4) hold but there exists
heteroscedasticity, ie,

var(uj) = 2.



Variance of 3 in Naive Regression

We have N
ﬁ :,B+ Zi:lxiui
> Xi2
Hence , ) o
var(B|X) = =171
n 2\2
(Zi:l Xj )
If homoscedasticity holds, this reduces to
o2

S0



The White Procedure for Naive Regression

» White (1980) proposes to estimate heteroscedasticity-robust

A E i\]
I 1 I 1

var(B) =
(Xr,2)"

where 1; is the OLS residual.
> It can be proved that vAr(j) is consistent.

» The White heteroscedasticity-robust standard error is defined
as the square root of var(p).



The White Heteroscedasticity-Robust t Test for Naive
Regression

> We can define the heteroscedasticity-robust t statistic as

ty = p-b
hese(f3)’
where hese(f3) is the White heteroscedasticity-robust standard

error.
> It can be shown that t; —4 N(0,1).

> The White heteroscedasticity-robust t test works in large
samples.



The General Case

Now we consider a multiple linear regression

yi = Bo + Pixi1 + - - + Bixik + ui,

on which the CLR Assumption (1)-(4) hold but there exists
heteroscedasticity, ie,

var(uj) = 2.



Matrix Notation

Recall that we define

1 Bo
Xi1 b1

Xj = - ) /B - .
Xik B

Hence we can rewrite the general linear regression as

yi =X+ uj



Variance Matrix ofB

n -1 n
G5+ (z) (z) |
i=1 i=1

-1 5 n
var(B|X) = (Z XiX ) Z xixlo? (Z X,'X,{>
i=1 i=1

If homoscedasticity holds, this reduces to

-1
n
o (Z x;x{) = JZ(X,X)_I
i=1

We have

Hence

-1



The White Procedure

P> We can estimate heteroscedasticity-robust variance by

-1

-1 n n
var(f) = E XiX, Z x;ix! 02 E Xi X! ,
i=1 i=1

where 1; is the OLS residual.
> It can be proved that vAr(j3) is consistent.

> The White heteroscedasticity-robust standard errors are
defined as the square root of the diagonal elements of var(f).



Summary: The Steps of Statistical Testing

vvyyypy v

v

Propose a null hypothesis and an alternative hypothesis from
some theory.

Construct a test statistic for the hypotheses.
Establish the distribution of the statistic.
We calculate the statistic using observed data.

If the value of the statistic is far in the tails of the
distribution, we say it is too far away from conjectured value.
Hence we reject our hypothesis.

With large sample, we do not need the normality Assumption.

With large sample, it is always advisable to use
heteroscedasticity-robust standard errors in constructing t
statistics.



