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An Important Question

OK, we have estimated a model,

LOG (INCOME ) = 7.3074 + 0.15974 ∗ EDU − 0.002961 ∗ EXPR

I What do you learn from the model?

I Are you sure?



Statistical Testing

I Statistical inference is to draw statistical conclusions from a
model.

I An example of “statistical conclusion” is

I’m not sure, but the return to education is probably positive.



The Null Hypothesis and the Alternative Hypothesis

Statistical testing based on a model. In our case, the model is

y = β0 + β1x1 + · · ·+ βkxk + u.

I Conjecture: from theory, propose a hypothesis (H0) and an
alternative hypothesis (H1). For example,

H0 : β1 = 0 H1 : β1 ̸= 0.

I Refutation: estimate β1 using data; reject H0 if β̂1 is too far
away from 0.

I This framework was developed by Ronald Fisher, Jerzy
Neyman, Egon Pearson.

I Karl Popper (1963): Conjectures and Refutations, The
Growth of Scientific Knowledge
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t Test

When we our hypothesis concerns only one parameter, say,

H0 : β1 = b H1 : β1 ̸= b.

We use the following statistic:

tβ̂1
=

β̂1 − b

se(β̂1)
,

where se(β̂1) is the standard error of β̂1.



Standard Error

I The variance matrix of β̂ = (β̂0, β̂1, ..., β̂k)
′ is given by

Σβ̂ = σ̂2(X ′X )−1,

where

σ̂2 =
1

n − k − 1

n∑
i=1

û2i =
1

n − k − 1

n∑
i=1

(yi − x ′i β̂)
2.

I The standard error of β̂1 is the square root of the (2, 2)
element of the matrix Σβ̂.

I Using matrix language,

se(β̂1) =
√

e ′2Σβ̂e2,

where e2 = (0, 1, 0, ..., 0)′.



Back to Our Example

LOG (INCOME ) = 7.31 + 0.160 ∗ EDU − 0.00296 ∗ EXPR
(0.0462) (0.00311) (0.00127)

n = 5778,R2 = 0.37

Suppose we want to test

H0 : β1 = 0 H1 : β1 ̸= 0.

tβ̂1
=

0.160− 0

0.00311
= 51.4



Distribution of tβ̂1

I The question is, is 51.4 far enough from 0, so that we can
reject H0?

I We need to know the distribution of tβ̂1
if H0 is true.

I If we know this distribution and 51.4 appears in the thin tail
of it, we can reject H0.

I More formally, with this distribution, we can find a critic value
c∗ such that we reject H0 if |β̂1| > c∗.



Distribution of tβ̂1

Suppose our model is

y = β0 + β1x1 + · · ·+ βkxk + u.

and our hypothesis is

H0 : β1 = b H1 : β1 ̸= b.

Then

tβ̂1
=

β̂1 − b

se(β̂1)
∼ tn−k−1,

where n − k − 1 is the degree of freedom.



t Distribution

I t distribution is also called “Student’s t distribution”, is the
distribution of the ratio

tm =
Z√
χ2
m/m

,

where Z is N(0, 1),χ2
m is chi-square distribution with m degree

of freedom, and Z and χ2 are independent.

I When m → ∞, t∞ ∼ N(0, 1).



χ2 Distribution

If Z1, ...,Zm are m iid N(0, 1) random variables, then

Q =
m∑
i=1

Z 2
i ∼ χ2

m,

where m is called the degrees of freedom.

I EQ = m, var(Q) = 2m.

I If X = (X1, . . . ,Xn)
′ is zero-mean multivariate normal, i.e.,

X ∼ N(0,Σ), where Σ is invertible, then X ′Σ−1X ∼ χ2
n.

I Let Z = (Z1, . . . ,Zn)
′ ∼ N(0, In). If P is an m-dimensional

orthogonal projection, m ≤ n, then Z ′PZ ∼ χ2
m.



χ2 Distribution
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Critical Value

The critical value is determined by the

P(|t| > c∗) = α,

or
[1− F (c∗)] · 2 = α,

where F is the (cumulative) distribution function of tβ̂1
under H0

and α is the significance level.



Size of Test

I In practice, we usually choose α to be 0.05.

I This means, if we reject H0 based on c∗, there is 5% chance
in that we may be wrong.

I Obviously, the smaller α is, the stronger our conclusion is.

I α is also called “size” of the test. It is the probability of
rejecting a correct hypothesis.



Critical Value for t10
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Critical Value for t∞
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Back to Our Example

LOG (INCOME ) = 7.31 + 0.160 ∗ EDU − 0.00296 ∗ EXPR
(0.0462) (0.00311) (0.00127)

n = 5778,R2 = 0.37

We want to test

H0 : β1 = 0 H1 : β1 ̸= 0.

I Calculate the t statistic, tβ̂1
= 0.160−0

0.00311 = 51.4

I The degree of freedom is 5775, which may be regarded as
infinity.

I Hence the critical value is c∗ = 1.96.

I Since tβ̂1
> c∗, H0 is rejected at 95% significance level.



p-value

I p-value is the probability of obtaining a statistic at least as
extreme as the one that was actually observed, assuming that
the null hypothesis holds.

I For the t-test studied above,

pv = P(|t| > |tβ̂|)
= 2[1− F (|tβ̂|)],

where F is the cumulative distribution function of the
t-statistic.

I The smaller pv is, the stronger we reject H0.



p-value for two-sided t test
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Back to Our Example

LOG (INCOME ) = 7.31 + 0.160 ∗ EDU − 0.00296 ∗ EXPR
(0.0462) (0.00311) (0.00127)

n = 5778,R2 = 0.37

We want to test

H0 : β2 = 0 H1 : β2 ̸= 0.

I Calculate the t statistic, tβ̂2
= −0.00296−0

0.00127 = −2.3307

I Since n − k − 1 is huge, tβ̂2
∼ N(0, 1).

I Hence the p-value is 2(1− Φ(2.3307)) = 0.02, where Φ is cdf
of N(0, 1).

I Since 0.02 < 0.05, H0 is rejected at 95% significance level.



Compare critical-value and p-value approaches

I Both approaches are equivalent.

I p-value indicates how strong the conclusion is.

I In practice, both t-statistic and p-value are routinely reported.



Confidence Interval

Consider

tβ̂ =
β̂ − β

se(β̂)
,

where β is the true value. Since tβ̂ is symmetrically distributed, we
can always find a constant cα/2 such that

P(|tβ̂| ≤ cα/2) = 1− α. (1)

The constant cα/2 is nothing but
∣∣Qα/2

∣∣, or Q1−α/2, the
(1− α/2)-quantile of the distribution of tβ̂. From (1) we obtain
confidence interval for β:

β ∈ [β̂ − cα/2se(β̂), β̂ + cα/2se(β̂)].



Confidence Interval

I 1− α is the confidence level of the CI. It is the frequency that
the observed interval contains the true parameter in repeated
sampling.

I CI is related with hypothesis testing. Every point in CI can be
regarded as no different, in statistical sense, than the true
value.

I CI is an interval for the true parameter, not for the estimator.
It is a type of interval estimate (in contrast to point estimate)
of a population parameter.

I Given a sample and a confidence level 1− α, we “observe” a
CI, the width of which is used to indicate the reliability of a
particular point estimate.



Back to Our Example

LOG (INCOME ) = 7.31 + 0.160 ∗ EDU − 0.00296 ∗ EXPR
(0.0462) (0.00311) (0.00127)

n = 5778,R2 = 0.37

We want to test H0 : β2 = 0 H1 : β2 ̸= 0.

I Since n − k − 1 is huge, tβ̂2
∼ N(0, 1).

I The 0.975-quantile of N(0, 1) is 1.96.

I Then the confidence interval for β2 is

[−0.00296− 1.96 · 0.00127,−0.00296 + 1.96 · 0.00127]
= [−0.0054,−0.0005]
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One-Sided Alternative Hypothesis

I Sometimes we have strong prior belief on the sign of a
parameter. For example, in the model of income
determination,

LOG (INCOME ) = β0 + β1EDU + β2EXPR,

we may hypothesize that β1 can never be negative.

I In this case, we should form our hypothesis as

H0 : β1 = 0 H1 : β1 > 0.

I The above test is called a “one-sided test”.

I More generally, a one-sided test is of the following form,

H0 : β1 = b H1 : β1 > b.



Critical Value of One-Sided Test

Let the hypothesis be,

H0 : β = b H1 : β > b.

The critical value is determined by the

P(t > c∗) = α,

or
1− F (c∗) = α,

where F is the distribution function of tβ̂ under H0 and α is the
significance level.



Critical Value of One-Sided Test

What if the hypothesis is,

H0 : β = b H1 : β < b ?

The critical value is determined by the

P(t < c∗) = α,

or
F (c∗) = α,

where F is the distribution function of tβ̂ under H0 and α is the
significance level.



p-value of One-Sided Test

The p-value is obtained by the

pv = P(t > tβ̂),

or
pv = 1− F (tβ̂),

where F is the distribution function of the t-statistic under H0.



p-value of One-Sided Test

What if the hypothesis is,

H0 : β = b H1 : β < b ?

The p-value is obtained by the

pv = P(t < tβ̂),

or
pv = F (tβ̂),

where F is the distribution function of the t-statistic under H0.



Back to Our Example

LOG (INCOME ) = 7.31 + 0.160 ∗ EDU − 0.00296 ∗ EXPR
(0.0462) (0.00311) (0.00127)

n = 5778,R2 = 0.37

We want to test

H0 : β2 = 0 H1 : β2 < 0.

I Calculate the t statistic, tβ̂2
= −0.00296−0

0.00127 = −2.3307

I Since n − k − 1 is huge, tβ̂2
∼ N(0, 1).

I Hence the p-value is P(t < tβ̂2
) = Φ(−2.33) = 0.01, where Φ

is cdf of N(0, 1).

I Since 0.01 < 0.05, H0 is rejected at 95% significance level.



Multi-Parameter Single Tests: A Typical Example

Some may argue that the return to university education is the
same as that to advanced professional schools (aps, 大专). To test
this hypothesis, we can write a model as

log(wage) = β0 + β1aps + β2university + β3expr + u.

And the hypothesis is whether one year at an advanced
professional school is worth one year at a university. This is

H0 : β1 = β2 H1 : β1 ̸= β2.



Multi-Parameter Single Tests

I Tests like H0 : β1 = β2 involve more than one parameters, but
only one relationship between parameters. We call such tests
as multi-parameter single tests.

I Question: Is H0 : β1 = β2 = β3 multi-parameter single tests?



t-statistic

I We can rewrite the hypothesis as

H0 : β1 − β2 = 0 H1 : β1 − β2 ̸= 0.

I And use the t-statistic:

tβ̂1−β̂2
=

β̂1 − β̂2

se(β̂1 − β̂2)
.

I The problem becomes, how do we calculate se(β̂1 − β̂2)?



The Standard Error

I We can calculate the variance of (β̂1 − β̂2) by

var(β̂1 − β̂2) = var(β̂1) + var(β̂2)− 2cov(β̂1, β̂2).

I In matrix language, suppose β̂ = (β̂1, β̂2)
′ and var(β̂) = Σ, we

have
β̂1 − β̂2 = (1 − 1) · β̂.

Hence

var(β̂1−β̂2) = (1−1)Σ

(
1
−1

)
= var(β̂1)+var(β̂2)−2cov(β̂1, β̂2).
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A Typical Example

I Some may argue that the return to any higher education is
zero, whether it is universities or advanced professional
schools. This hypothesis can be written as

H0 : β1 = β2 = 0.

The alternative is: At least one parameter, β1 or β2, is
nonzero.

I The above test is a multi-parameter multiple test, which
involves more than one parameters and more than one
hypotheses (or “restrictions”).



Number of Restrictions

I One hypothesis (such as β1 = 0) is a restriction that your
conjecture imposes on the model.

I Count the number of restrictions for the following hypotheses:

I H0 : β1 = β2 = β3

I H0 : β1 + β2 = 1
I H0 : β1 = β2 = 0



Restricted Model

I Suppose the hypotheses hold, we can rewrite our model with
restrictions imposed. This would obtain the “restricted
model”.

I For example, suppose our model is

log(wage) = β0 + β1aps + β2university + β3expr + u,

and suppose the following hypotheses hold,

H0 : β1 = β2 = 0.

The restricted regression model is then

log(wage) = β0 + β3expr + u.



More Examples

Write the restricted models for the following hypotheses:

I H0 : β1 = β2 = β3

I H0 : β1 + β2 = 1



F Statistic

Let the number of restrictions (hypotheses) be j , the number of
total observations be n, the number of regressors k . And denote
SSRR the SSR of the restricted regression, denote SSRU the SSR
of the unrestricted regression. The famed “F Statistic” is given by

F =
(SSRR − SSRU)/j

SSRU/(n − k − 1)
.

Or equivalently,

F =

(
R2
U − R2

R

)
/j(

1− R2
U

)
/(n − k − 1)

.



F Distribution

If V1 ∼ χ2
m1
, V2 ∼ χ2

m2
, and V1 and V2 are independent, then

F =
V1/m1

V2/m2
∼ Fm1,m2 .

I m1 is called the numerator degrees of freedom and m2 the
denominator degrees of freedom.

I m1 and m2 control the shape of the distribution.

I EF = m2/(m2 − 2) for m2 > 2.

I If t ∼ tm, then t2 ∼ F1,m.



F Distribution
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F Test

I If the null hypotheses hold, and if the CLR Assumptions
(1)-(6) hold, F is distributed as F distribution with j
numerator degrees of freedom and n − k − 1 denominator
degrees of freedom, Fj ,n−k−1.

I If the null hypotheses do not hold, then SSRR − SSRU should
be large. We reject the hypotheses if F is large enough.



Derivation

We can show that

V1 =
SSRR − SSRU

σ2
∼ χ2

j ,

V2 =
SSRU

σ2
∼ χ2

n−k−1,

and V1 and V2 are independent. Hence

F =
(SSRR − SSRU)/j

SSRU/(n − k − 1)

is indeed distributed as Fj ,n−k−1.



Critical Value and p-value

I The critical value c∗ is obtained by

P(f > c∗) = α,

where α is the size of the test.

I The p-value is obtained by

pv = P(f > F ).



An Application of F Test: Significance of a Model

Suppose our model is

y = β0 + β1x1 + · · ·+ βkxk + u.

The test of the overall significance of the model is the test of the
following hypothesis

H0 : β1 = · · · = βk = 0

H1 : At least one of the β′s is nonzero



An Application of F Test: Significance of a Model

I The restricted model is

y = β0 + u.

The SSR of this model is nothing but SST of the original
model,

SSRR = SST =
n∑

i=1

(yi − ȳ)2.

I Hence the F statistic for the overall significance test of the
model is

F =
(SST − SSR)/k

SSR/(n − k − 1)
.

I This test is routinely reported in econometric softwares.



An Application of F Test: Granger Causality

I Granger causality means that if x causes y , the x is a useful
predictor of yt .

I Consider the model

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt−1 + · · ·+ γqxt−q + ut .

The Granger Causality Test is formulated as follows,

H0 : γ1 = · · · = γq = 0 H1 : At least one of γ′s is nonzero.
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When sample size becomes large

I When sample size becomes large, the normality assumption is
not required for making inferences.

I Recall law of large numbers for random vectors.

I Central limit theorem for random vectors. Let ξ1, ..., ξn be an
iid sample with mean zero and a well-defined covariance
matrix Σξ. The CLT dictates that

1√
n

n∑
i=1

ξi →d N(0,Σξ).



The Asymptotic t Test

I Assume Exix ′i = Q.Using CLT, we can show that

√
n(β̂ − β) →d N(0, σ2Q−1).

I From this it is easy to see that for a test H0 : β1 = b, the
corresponding t statistic

β̂1 − b

se(β̂1)
→d N(0, 1).



Case Study: Asymptotic Approximation

I We generate data as follows,

yi = 1 + 2xi + ui , i = 1, . . . , n

where xi ∼ N(0, 1) and ui = ei − 1 with ei ∼ Exponential(1).

I We calculate the t-statistic of the slope parameter,
t = (β̂1 − 2)/se(β̂1).

I Repeat the experiment for 10000 times and compare the
distribution of t’s with the standard normal distribution
(N(0,1)).



Asymptotic Approximation When n = 10
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Asymptotic Approximation When n = 20

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

Quantiles of N(0,1)

Q
ua

nt
ile

s 
of

 t−
st

at
is

tic
s

QQ plot of t−statistic versus N(0,1) when n=20



Asymptotic Approximation When n = 100
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How Big is Big Enough?

I The asymptotic distribution describes the statistic distribution
of a statistic when the sample size n goes to infinity.

I In practice, it serves as an approximation to the finite-sample
distribution, which is usually very complicated. The bigger n
is, the better the approximation is.

I In many applications where the length of data is short, the
asymptotic distribution is still used for the lack of better
alternatives.



The Asymptotic F Test

The usual F statistic still works,

F =
(SSRR − SSRU)/j

SSRU/(n − k − 1)
→d Fj ,∞.

Note that Fj ,∞ is identical with χ2
j .
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The Lagrange Multiplier Test

I The usual F test needs to run both restricted and unrestricted
regressions. The LM test needs only the restricted regression.

I Suppose for the hypothesis
H0 : βk−m+1 = βk−m+2 = · · · = βk = 0, we run the restricted
regression y on x1, · · · , xk−m and obtain the residual ũ

I Run an auxiliary regression of, ũ on xk−m+1, · · · , xk and
obtain the R2.

I We can show that under the H0,

LM = nR2 →d χ2
m.



Example: Testing for Heteroscedasticity

I A direct application of the LM test is to test for
heteroscedasticity.

I We state the null hypothesis as

H0 : E(u|x1, ..., xk) = σ2.

I The alternative is that there exists heteroscedasticity, of which
the form we don’t know.

I Hence it is best to use LM test, which requires the estimation
of the restricted model only.



Breusch-Pagan Test

I We first assume homoscedasticity, run OLS on the restricted
model, and obtain the residual û.

I Then we run the auxiliary regression,

û2 = δ0 + δ1x1 + · · ·+ δkxk + v

and obtain the R2.

I The LM statistic is thus

LM = nR2 →d χ2
k .

I This procedure implicitly assumes that if u2 is dependent on x
at all, the dependence is linear.



When there is heteroscedasticity

I The OLS estimator is still unbiased and consistent, albeit not
efficient.

I But the usual estimator for var(β̂i ) is wrong, posing problems
for t tests.



The Naive Regression Case

Suppose we have a naive linear regression

yi = βxi + ui ,

on which the CLR Assumption (1)-(4) hold but there exists
heteroscedasticity, ie,

var(ui ) = σ2
i .



Variance of β̂ in Naive Regression

We have

β̂ = β +

∑n
i=1 xiui∑n
i=1 x

2
i

.

Hence

var(β̂|X ) =

∑n
i=1 x

2
i σ

2
i(∑n

i=1 x
2
i

)2 .
If homoscedasticity holds, this reduces to

σ2∑n
i=1 x

2
i

= σ2(X ′X )−1.



The White Procedure for Naive Regression

I White (1980) proposes to estimate heteroscedasticity-robust
variance by

v̂ar(β̂) =

∑n
i=1 x

2
i û

2
i(∑n

i=1 x
2
i

)2 ,
where ûi is the OLS residual.

I It can be proved that v̂ar(β̂) is consistent.

I The White heteroscedasticity-robust standard error is defined
as the square root of v̂ar(β̂).



The White Heteroscedasticity-Robust t Test for Naive
Regression

I We can define the heteroscedasticity-robust t statistic as

tβ̂ =
β̂ − b

hese(β̂)
,

where hese(β̂) is the White heteroscedasticity-robust standard
error.

I It can be shown that tβ̂ →d N(0, 1).

I The White heteroscedasticity-robust t test works in large
samples.



The General Case

Now we consider a multiple linear regression

yi = β0 + β1xi1 + · · ·+ β1xik + ui ,

on which the CLR Assumption (1)-(4) hold but there exists
heteroscedasticity, ie,

var(ui ) = σ2
i .



Matrix Notation

Recall that we define

xi =


1
xi1
...
xik

 , β =


β0
β1
...
βk

 .

Hence we can rewrite the general linear regression as

yi = x ′iβ + ui



Variance Matrix of β̂

We have

β̂ = β +

(
n∑

i=1

xix
′
i

)−1( n∑
i=1

xiui

)
.

Hence

var(β̂|X ) =

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xix
′
iσ

2
i

(
n∑

i=1

xix
′
i

)−1

.

If homoscedasticity holds, this reduces to

σ2

(
n∑

i=1

xix
′
i

)−1

= σ2(X ′X )−1.



The White Procedure

I We can estimate heteroscedasticity-robust variance by

v̂ar(β̂) =

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xix
′
i û

2
i

(
n∑

i=1

xix
′
i

)−1

,

where ûi is the OLS residual.

I It can be proved that v̂ar(β̂) is consistent.

I The White heteroscedasticity-robust standard errors are
defined as the square root of the diagonal elements of v̂ar(β̂).



Summary: The Steps of Statistical Testing

I Propose a null hypothesis and an alternative hypothesis from
some theory.

I Construct a test statistic for the hypotheses.

I Establish the distribution of the statistic.

I We calculate the statistic using observed data.

I If the value of the statistic is far in the tails of the
distribution, we say it is too far away from conjectured value.
Hence we reject our hypothesis.

I With large sample, we do not need the normality Assumption.

I With large sample, it is always advisable to use
heteroscedasticity-robust standard errors in constructing t
statistics.


