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What is linear regression?

I We want to explain an economic variable y using x , which is usually
a vector.

I For example, y may be the wage of an individual, and x include
factors such as experience, education, gender, and so on.

I Let x = (1, x1, ..., xk), and let its realization for ith-individual be
xi = (1, xi1, ..., xik)

′, we may write:

y = β0 + β1x1 + · · ·+ βkxk + u. (1)



Some Terminologies

Now we have

y = β0 + β1x1 + · · ·+ βkxk + u. (2)

I y is called the “dependent variable”, the “explained variable”,
or the “regressand”

I The elements in x are called the “independent variables”,
“explanatory variables”, “covariates”, or the “regressors”.

I β’s are coefficients. In particular, β0 is usually called
“intercept parameter” or simply called “constant term”, and
(βj , 1 ≤ j ≤ k) are usually called slope parameters.

I u is called the “error term”, “residuals”, or disturbances and
represents factors other than x that affect y .



An Example

I We may have an econometric model of wages:

wagei = β0 + β1edui + β2expri + ui

I edui denotes the education level of individual i in terms of
years of schooling and expri denotes the working experience of
individual i .

I β0 is the constant term or the intercept. It measures what a
male worker would expect to get if he has zero education and
zero experience.

I β1 is the slope parameter for the explanatory variable edu. It
measure the marginal increase in wage if a worker gains
additional year of schooling, holding other factors fixed, or
controlling for other factors.

I ui may include the gender, the luck, or the family background
of the individual, etc.



Partial Effects

I (βj , j = 1, .., k) can be interpreted as “partial effects”.

I For example, since
wage = f (edu, expr , u) = β0 + β1edu + β2expr + u, we have

∂wage

∂edu
= β1,

which means that

lim
∆→0

f (edu +∆, expr , u)− f (edu, expr , u)

∆
= β1

I We say: With one unit of increase in edu, an individual’s wage
increases by β1, holding other factors fixed, or controlling for
other factors.



Identification

I With enough data, we can indeed identify the partial effects.
Following the above example, if we have 3 observations, then
we can identify all three parameters: β0, β1, β2.

I We can simply take difference of any two pairs and obtain

∆wage1 = β1∆edu1 + β2∆expr1 +∆u1

∆wage2 = β1∆edu2 + β2∆expr2 +∆u2

I If we assume ∆u1 = ∆u2 = 0 (i.e., u does not change with
edu or expr), then we can solve the system of equations for
β1, β2. β0 can also be identified by assuming that Eu = 0.

I If we have more than 3 observations, then we have the
so-called “over-identification” problem.

I If u does change with edu or expr (or, u is correlated with edu
or expr), then the model is not identified.



Econometric Clear Thinking

I Whenever we make comparisons or inferences, we should hold
relevant factors fixed.

I This is achieved in econometrics by multiple linear regression.

I The partial effects interpretation is not without problem. It is
partial equilibrium analysis.

I We may have the socalled “general equilibrium problem”,
which happens when a change in a variable leads to changes
in the structure of regression equation.

I In most cases, however, partial effects analysis is a good
approximation, or, the best alternative.



Classical Linear Regression Assumptions

(1) Linearity

(2) Random sampling 99K (xi , yi ) are iid across i

(3) No perfect collinearity ⇔ Any element in x cannot be
represented by the linear combination of other elements.

(4) Zero conditional mean ⇔

E(u|x) = E(u|x1, x2, ..., xk) = 0.

(5) Homoscedasticity
var(u|x) = σ2.

(6) Normality
u|x ∼ N(0, σ2).



More on Linearity

I Linearity can be achieved by transformation.

I For example, we may have

log(wagei ) = β0+β1 log(experi )+β2 log(educi )+β3femalei+ui .

I Now the parameter β1 represents the elasticity of wage with
respect to changes in experiences:

β1 =
∂ log(wagei )

∂ log(experi )
=

∂wagei/wagei
∂experi/experi

≈ ∆wagei/wagei
∆experi/experi

.



More on No Perfect Collinearity

True or False?

(1) “No Perfect Collinearity” does not allow correlation. For
example, the following is perfect collinearity:

testscore = β0 + β1eduExpend + β2familyIncome + u.

(2) The following model suffers from perfect collinearity:

cons = β0 + β1income + β2income2 + u.

(3) The following model suffers from perfect collinearity:

log(cons) = β0 + β1 log(income) + β2 log(income2) + u.

(4) The following model suffers from perfect collinearity:

cons = β0+β1husbIncome+β2wifeIncome+β3familyIncome+u.



More on Zero Conditional Mean

I If E(u|x) = 0, we call x “exogenous”.

I If E(u|x) ̸= 0, we call x “endogenous”.

I The notion of being “exogenous” or “endogenous” can be
understood in the following model,

L = αW + γX + u,

where both the employment level (L) and the average wage
(W ) are endogenous variables, while the foreign exchange rate
(X ) can be considered exogenous. The residual u should
contain shocks from both supply and demand sides.



Endogenous Wage

If the employment level and the average wage are determined by

Ls = bW + vs

Ld = aW + cX + vd

Ld = Ls ,

Then we can solve for the equilibrium employment and wage rate:

W =
c

b − a
X − vs − vd

b − a

L =
bc

b − a
X − avs − bvd

b − a
.

It is obvious that cov(W , vd) ̸= 0 and cov(W , vs) ̸= 0. Thus W
should be correlated with u, hence the endogeneity in econometric
sense.



More on Zero Conditional Mean

I In econometrics, we call an explanatory variable x
“endogenous” as long as E(u|x) ̸= 0, or x is correlated with u.

I Usually, nonzero conditional mean is due to
I Endogeneity
I Missing variables (e.g., ability in wage equation)
I Wrong functional form (e.g., missing quadratic term)



More on Homoscedasticity

I If var(ui |xi ) = σ2, we call the model “homoscedastic”. If not,
we call it “heteroscedastic”.

I Note that var(ui |xi ) = var(yi |xi ). If var(yi |xi ) is a function of
some regressor, then there would be heteroscedasticity.

I Examples of heteroscedasticity
I Income v.s. Expenditure on meals
I Gender v.s. Wage

I ...
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Ordinary Least Square

We have
yi = β0 + β1xi1 + · · ·+ βkxik + ui .

The OLS method is to find beta’s such that the sum of squared
residuals (SSR) is minimized:

SSR(β0, ..., βk) =
n∑

i=1

[(yi − (β0 + β1xi1 + · · ·+ βkxik)]
2.

I OLS minimizes a measure of fitting error.



First Order Conditions of OLS

To minimize SSR, we find the first-order conditions of the
minimization problem:

∂SSR

∂β0
= 0

∂SSR

∂β1
= 0

...
∂SSR

∂βk
= 0



First Order Conditions of OLS

We obtain:

2
n∑

i=1

((yi − (β̂0 + β̂1xi1 + · · ·+ β̂kxik)) = 0

2
n∑

i=1

((yi − (β̂0 + β̂1xi1 + · · ·+ β̂kxik))xi1 = 0

...

2
n∑

i=1

((yi − (β̂0 + β̂1xi1 + · · ·+ β̂kxik))xik = 0.

We have (1 + k) equations for (1 + k) unknowns. If there is no
perfect collinearity, we can solve for these equations.



OLS for Naive Regression

We may have the following model

yi = βxi + u.

Then the first-order condition is:

n∑
i=1

(yi − β̂xi )xi = 0

We obtain

β̂ =

∑n
i=1 yixi∑n
i=1 x

2
i



OLS for Simple Regression

The following is called a “simple regression”:

yi = β0 + β1xi + ui .

Then the first-order conditions are:

n∑
i=1

(yi − (β̂0 + β̂1xi )) = 0

n∑
i=1

(yi − (β̂0 + β̂1xi ))xi = 0



OLS for Simple Regression, Continued

From the first-order conditions, we obtain

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2

and β̂0 = ȳ − x̄ β̂1, where x̄ = 1/n
∑n

i=1 xi and ȳ = 1/n
∑n

i=1 yi .



More on OLS for Simple Regression

From y = β0 + β1x + u, we have

β1 =
cov(x , y)

var(x)
.

And we have obtained

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
=

1
n

∑n
i=1(yi − ȳ)(xi − x̄)
1
n

∑n
i=1(xi − x̄)2

=
ˆcov(x , y)

v̂ar(x)

Hence β1 measures the correlation between y and x .



True or False?

In the simple regression model,

y = β0 + β1x + u.

I β0 is the mean of y

I β1 is the correlation coefficient between x and y



Estimated Residual

Let
ûi = yi − (β̂0 + β̂1xi ).

From the first-order conditions we have

¯̂u =
1

n

n∑
i=1

ûi = 0,

and
1

n

n∑
i=1

xi ûi = 0.



Connection between Simple and Naive

We have {
yi = β̂0 + β̂1xi + ûi
ȳ = β̂0 + β̂1x̄ + 0.

Hence
yi − ȳ = β̂1(xi − x̄) + ûi .

Using the formula for the naive regression, we obtain:

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
.



Regression Line

For the simple regression model,

y = β0 + β1x + u.

We can define a “regression line”:

y = β̂0 + β̂1x .

It is easy to show that

ȳ = β̂0 + β̂1x̄ .



In Matrix Language

I For models with two or more regressors, the expression for β̂i
are very complicated.

I However, we can use matrix language to obtain more beautiful
and more memorable expressions. Let

Y =


y1
y2
...
yn

 ,X =


1 x11 · · · x1k
1 x21 · · · x2k
...

...
1 xn1 · · · xnk

 , β =


β0

β1

...
βk

 , u =


u1
u2
...
un

 .

Then we may write the multiple regression as

Y = Xβ + u.



Some Special Vectors and Matrices

I Vector of ones, ι = (1, 1, ..., 1)′. For a vector of the same
length, we have

n∑
i=1

xi = x ′ι = ι′x , and
1

n

n∑
i=1

xi = (ι′ι)−1ι′x .

I Vector of standard basis,
e1 = (1, 0, 0, ..., 0)′,e2 = (0, 1, 0, ..., 0)′, etc.

I Identity matrix, I .
I Projection matrix, square matrices that satisfy P2 = P .

I If P is symmetric, it is called an orthogonal projection (e.g.,
P = X (X ′X )−1X ′)

I Oblique projection, e.g., P = X (W ′X )−1W ′, P =

[
0 0
α 1

]
.

I If P is an orthogonal projection, so is I − P.



Range of Matrix

I The span of a set of vectors is the set of all linear
combinations of the vectors.

I The range of a matrix X , R(X ), is the span of the columns of
X .

I R(X )⊥ is the orthogonal complement R(X ), which contains
all vectors that is orthogonal to R(X ).
I Two vectors, x and y , are orthogonal if x · y = x ′y = 0.
I A vector y is orthogonal to a subspace U if for all x ∈ U,

x · y = 0.

I R
([

1
0

])
is the x-axis.



Orthogonal Projection on R(X )

I By definition, the orthogonal projection of y on R(X ) can be
represented by Xβ, where β is a vector. We denote

proj(y |X ) ≡ PX y = Xβ.

I y − Xβ should be orthogonal to every element in R(X ),
which include every column of X . Then we may solve

X ′(y − Xβ) = 0

and obtain β = (X ′X )−1X ′y . Hence PX = X (X ′X )−1X ′ is
the orthogonal projection on R(X ).

I I − PX is the orthogonal projection on R(X )⊥, or
equivalently, N (X ′).



Vector Differentiation

I Let z = (z1, ..., zk) be a vector of variables and f (z) be a
function of z . Then

∂f

∂z
=


∂f
∂z1
∂f
∂z2
...
∂f
∂zk

 .



Vector Differentiation

I In particular, if f (z) = a′z , where a is a vector of constants.
Then

∂

∂z
(a′z) = a =

∂

∂z
(z ′a)

I If f (z) = Az is a vector-valued function, where A is a matrix,
then

∂

∂z
(Az) = A′.



Vector Differentiation of Quadratic Form

If f (z) = z ′Az , where A is a matrix, then

∂

∂z
(z ′Az) = (A+ A′)z .

If A is symmetric, ie, A = A′, then

∂

∂z
(z ′Az) = 2Az .

In particular, when A = I , the identity matrix, then

∂

∂z
(z ′z) = 2z .



OLS in Matrix

I The least square problem can be written as

min
β

(Y − Xβ)′(Y − Xβ).

I The first-order condition in matrix form:

2X ′(Y − X β̂) = 0.

I Solving for β,
β̂ = (X ′X )−1X ′Y .

I The matrix of X ′X is invertible since we rule out perfect
collinearity.

I X β̂ is nothing but the orthogonal projection of Y on R(X ).

I If there is only one regressor and there is no constant term, X
is a vector. Then the above expression reduces to the naive
linear regression estimator.



An Equivalent Derivation

I The least square problem can be written as

min
β

n∑
i=1

(yi − x ′iβ)
2,

where xi = (1, xi1, ..., xik) and β = (β0, β1, ..., βk).

I The first-order condition in matrix form:

n∑
i=1

2xi (yi − x ′i β̂) = 0.

I Solving for β,

β̂ =

(
n∑

i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
.



Equivalence

I We can check that

X ′X =
n∑

i=1

xix
′
i , and X ′Y =

n∑
i=1

xiyi .

I If there is only one regressor and there is no constant term, xi
is a scalar. Then the above expression reduces to the naive
linear regression estimator.
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The Population Moments

From the assumption E(u|x) = 0, we have

E(u) = 0, and E(uxj) = 0, j = 1, ..., k.

This is 
E(y − (β0 + β1x1 + · · ·+ βkxk)) = 0

E((y − (β0 + β1x1 + · · ·+ βkxk))x1) = 0
...

E((y − (β0 + β1x1 + · · ·+ βkxk))xk) = 0

The above equations are called “moment conditions”.



The Sample Moments

We can estimate population moments by sample moments. For
example, the sample moment of E(u) is

1

n

n∑
i=1

ui =
1

n

n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βkxik)).

Similarly, the sample counterpart of E(uxj) = 0 is

1

n

n∑
i=1

uixij =
1

n

n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βkxik))xij = 0.



Method of Moments (MM)

Plug the sample moments into the moment conditions, we obtain

1

n

n∑
i=1

(yi − (β̂0 + β̂1xi1 + · · ·+ β̂kxik)) = 0,

and

1

n

n∑
i=1

(yi − (β̂0 + β̂1xi1 + · · ·+ β̂kxik))xij = 0, j = 1, ..., k.

We can see that these equations are the same as those in the
first-order conditions of the OLS.
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The Distribution Assumption

I Under CLR Assumption (6), u is normally distributed with
mean 0 and variance σ2. The density function of u is given by

p(u;σ) =
1√
2πσ

exp

(
− u2

2σ2

)
.

I Then we can estimate the linear regression model using MLE.

I More generally, we can assume other distributional function
for u, t-distribution for example.



Likelihood Function

I By the Assumption (2), random sampling, the joint
distribution of (u1, ..., un) is

p(u1, ..., un; θ) = p(u1; θ)p(u2; θ) · · · p(un; θ).

I Given observations (Y ,X ), the likelihood function is defined
as

p(β, θ|y ,X ) = p(y1 − x ′1β, ..., yn − x ′nβ; θ)

= p(y1 − x ′1β; θ)p(y2 − x2β; θ) · · · p(yn − x ′nβ; θ).



Maximum Likelihood Estimation

I MLE implicitly assumes that what happens should most likely
happen.

I MLE is to solve for β̂ and θ̂ such that the likelihood function
is maximized,

max
β,θ

p(β, θ|y ,X ).

I In practice, we usually maximize the log likelihood function:

log(p(β, θ|y ,X )) =
n∑

i=1

log(p(yi − x ′iβ; θ)).



MLE of Classical Linear Regression

I We assume ui ∼ iid N(0, σ2).

I The log likelihood function is

log(p(β, σ|y ,X )) = −n

2
log(2π)−n log(σ)− 1

2σ2

n∑
i=1

(yi−x ′iβ)
2.

I The first-order condition for β is

n∑
i=1

xi (yi − x ′i β̂) = 0.

I This yields the same β̂ as in OLS.
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Residuals

I Residuals are unobservable. But they can be estimated:

ûi = yi − x ′i β̂.

I Using matrix language,

û = (I − PX )Y .

I If β̂ is close to β, then ûi is close to ui .

I Let ŷi = x ′i β̂, we call ŷi the “the fitted value”.

I Then the explained variable can be decomposed into

yi = ŷi + ûi .



Variations

I SST (total sum of squares)

SST ≡
n∑

i=1

(yi − ȳ)2 = Y ′(I − Pι)Y .

I SSE (explained sum of squares)

SSE ≡
n∑

i=1

(ŷi − ȳ)2 = Y ′(PX − Pι)Y .

I SSR (sum of squared residuals)

SSR ≡
n∑

i=1

û2i = Y ′(I − PX )Y .

I We have SST = SSE+ SSR.



Goodness of Fit

I R2 of the regression:

R2 ≡ SSE/SST = 1− SSR/SST.

I R2 is the fraction of the sample variation in y that is
explained by x . And we have 0 ≤ R2 ≤ 1.

I R2 does NOT validate a model. A high R2 only says that y is
predictable with information in x . In social science, this is not
the case in general.

I If additional regressors are added to a model, R2 will increase.

I The adjusted R2, denoted as R̄2, is designed to penalize the
number of regressors,
R̄2 = 1− [SSR/(n − 1− k)]/[SST/(n − 1).



Outline

I The Model
I Estimation

I Ordinary Least Square
I Method of Moments
I Maximum Likelihood Estimation

I Properties of OLS Estimator
I Goodness of Fit
I Unbiasedness
I Consistency
I Efficiency

I Time Series Regression



Definition

I We call an estimator β̂ is unbiased if

Eβ̂ = β.

I β̂ is a random variable. For example, the OLS estimator
β̂ = (X ′X )−1X ′Y is random since both X and Y are sampled
from a population.

I Given a sample, however, β̂ is determined. So unbiasedness is
NOT a measure of how good a particular estimate is, but a
property of a good procedure.



The Unbiasedness of OLS Estimator

Theorem: Under Assumptions (1) through (4), we have

E(β̂j) = βj , j = 0, 1, ..., k.

Proof:

E(β̂) = E(X ′X )−1X ′Y = E(X ′X )−1X ′(Xβ+U) = β+E(X ′X )−1X ′U = β.

Note that

E(X ′X )−1X ′U = E
[
E
[
(X ′X )−1X ′U|X

]]
= E

[
(X ′X )−1X ′E [U|X ]

]
= 0.



Omitted Variable Bias

I When we, mistakenly or due to lack of data, exclude one or
more relevant variables, OLS yields biased estimates. This
bias is called “omitted variable bias”.

I For example, suppose the wage of a worker is determined by
both his education and his innate ability:

wage = β0 + β1education + β2abililty + u.

The ability, however, is not observable. We may have to
estimate the following model,

wage = β0 + β1education + v ,

where v = β2abililty + u.



The General Case

Suppose the true model, in matrix form, is

Y = X1β1 + X2β2 + U, (3)

where β1 is the parameter of interest. However, we omit X2 and
estimate

Y = X1β1 + V . (4)

Denote the OLS estimator of β1 in (3) as β̂1 and the OLS
estimator of β1 in (4) as β̃1. Then

E(β̃1|X1,X2) = β1 + (X ′
1X1)

−1X ′
1X2β2.



Formula of Omitted-Variable Bias

Suppose we only omit one relevant variable, ie, X2 is a vector.
Then (X ′

1X1)
−1X ′

1X2 is the OLS estimator of the following
regression:

X2 = X1δ +W .

So we have
E(β̃1|X1,X2) = β1 + δ̂β2.



A Special Case

Suppose the true model is

y = β0 + β1x1 + β2x2 + u.

But we estimated
y = β̃0 + β̃1x1 + ṽ .

I From the formula of omitted-variable bias,

E(β̃1|x1, x2) = β1 + δ̂1β2,

where δ̂1 is the OLS estimate of δ1 in

x2 = δ0 + δ1x1 + w .



Bias Up or Down?

We have
E(β̃1|x1, x2) = β1 + δ̂1β2.

Recall that δ1 measures the correlation between x1 and x2. Hence
we have

OLS Bias corr(x1, x2) > 0 corr(x1, x2) < 0

β2 > 0

β2 < 0



Return to Education

I Back to our example, suppose the wage of a worker is
determined by both his education and his innate ability:

wage = β0 + β1education + β2abililty + u.

The ability, however, is not observable. We may have to
estimate the following model,

wage = β0 + β1education + v ,

where v = β2abililty + u.

I Are we going to overestimate or underestimate the return to
education?
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Definition

I We say β̂ is consistent if

β̂ → β as n → ∞.

I This basically says, if we observe more and more, we can
estimate our model more and more accurately till exactness.



Law of Large Number

Let x1, x2, ..., xn be iid random variables with mean µ. Then

1

n

n∑
i=1

xi →p µ.



LLN for Vectors and Matrices

I The xi in LLN can be vectors. And if

Ex = E


xi ,1
xi ,2
...

xi ,k

 = µ =


µ1

µ2
...
µk

 ,

then
1

n

n∑
i=1

xi →p µ.

I The same is also true for matrices.



Consistency of OLS Estimator

We have

β̂ = β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
.

If Exix ′i = Q, and Exiui = 0, then by LLN we have

β̂ →p β.



Inconsistency of OLS Estimator

When Exiui = ∆ ̸= 0, then

β̂ →p β + Q∆.

I Inconsistency occurs when xi is correlated with ui , or, x is
“endogenous”.

I Q∆ is called “asymptotic bias”.
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Relative Efficiency

I If θ̂ and θ̃ are two unbiased estimators of θ, θ̂ is efficient
relative to θ̃ if var(θ̂) ≤ var(θ̃) for all θ, with strict inequality
for at least one θ.

I Relative efficiency compares preciseness of estimators.

I Example: Suppose we want to estimate the population mean
µ of an i.i.d. sample {xi , i = 1, . . . , n}. Both x̄ and x1 are
unbiased estimators, however, x̄ is more efficient since
var (x̄) = var(x1)

n ≤ var(x1).

I If θ is a vector, we compare the covariance matrices of θ̂ and
θ̃ in the sense of positive definiteness.



Covariance Matrix of A Random Vector

I The variance of a scalar random variable x is

var(x) = E(x − Ex)2.

I If x is a vector with two elements,

x =

(
x1
x2

)
,

then the variance of x is a 2-by-2 matrix (we call “covariance
matrix”):

Σx =

(
var(x1) cov(x1, x2)
cov(x2, x1) var(x2)

)
,

where cov(x1, x2) is the covariance between x1 and x2:

cov(x1, x2) = E(x1 − Ex1)(x2 − Ex2).



Covariance Matrix of A Random Vector

I More generally, if x is a vector with n elements,

x =


x1
x2
...
xn

 ,

then the covariance matrix of x is a n-by-n matrix:

Σx =


var(x1) cov(x1, x2) · · · cov(x1, xn)
cov(x2, x1) var(x2) · · · cov(x2, xn)
...

...
...

cov(xn, x1) cov(xn, x2) · · · var(xn)

 .



Covariance Matrix of A Random Vector

I The covariance matrix is the second moment of a random
vector:

Σx = E(x − Ex)(x − Ex)′.

I It is obvious that Σx is a symmetric matrix.



The Formula of Covariance Matrix

Given random vectors x and y , if

y = Ax ,

where A is a matrix. Then

Σy = AΣxA
′.



Covariance Matrix of the Residual

Write the original linear regression model as

yi = x ′iβ + ui ,

where

xi = (1, xi1, ..., xik)
′

β = (β0, β1, ..., βk).

I Eui = 0 ⇐ Assumption (4) zero conditional mean

I Eu2i = σ2 ⇐ Assumption (5) homoscedasticity

I Euiuj = 0 for i ̸= j ⇐ Assumption (2) random sampling

What is the covariance matrix for U = (u1, u2, ..., un)
′?



Covariance Matrix of the OLS Estimator

I The covariance matrix for U = (u1, u2, ..., un)
′ is

Σu = σ2I ,

where I is the identity matrix.

I We have
β̂ = β + (X ′X )−1X ′U.

I The covariance matrix of β̂ is then

Σβ̂ = σ2(X ′X )−1.

I The diagonal elements of Σβ̂ give the standard error of β̂.

I If β̃ is another unbiased estimator of β with covariance matrix
Σβ̃, we say β̂ is more efficient relative to β̃ if Σβ̃ − Σβ̂ is
semi-positive definite for all β, with strict positive definiteness
for at least one β.



Simple Regression

For a simple regression,

y = β0 + β1x + u.

We can obtain

Σ =
σ2

n
∑

i (xi − x̄)2

( ∑
i x

2
i −

∑
i xi

−
∑

i xi n

)
.

I The variance of β̂1 is

var(β̂1) =
σ2∑

i (xi − x̄)2
.

I The less σ2, the more accurate β̂1 is.

I The more variation in x , the more accurate β̂1 is.

I And the more sample size, the more accurate β̂1 is.



Is OLS A Good Estimator?

Define what is “good”:

I Is it unbiased?

I Is it consistent?

I Does it have a small variance?



Gauss-Markov Theorem

Theorem: Under Assumption 1-5, OLS is BLUE (Best Linear
Unbiased Estimator).

I Define “best”: smallest variance.

I Define “linear”:

β̃j =
n∑

i=1

wijyi . (5)

I And unbiasedness: Eβ̃ = β.

I The message:
We need not look for alternatives that are unbiased and are in
the form of (5).
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Time Series Regression Assumptions

(1) Linearity
yt = β0 + β1x1t + · · ·βkxkt + ut .

(2) (xt , yt) are jointly stationary and ergodic.

(3) No perfect collinearity.

(4) Past and contemporary exogeneity ⇔

E(ut |xt , xt−1, ...) = 0.



Stationarity

I Weak stationarity.

Ext = µ, cov(xt , xt−τ ) = γτ , τ = . . . ,−2,−1, 0, 1, 2, . . . .

I Strict stationarity.

F (Xt , ...,XT ) = F (Xt+τ , ...,XT+τ ),

where F is the joint distribution function.



Ergodicity

I An ergodic time series (xt) has the property that xt and xt−k

are independent if k is large.

I If (xt) is stationary and ergodic, then a law of large number
holds,

1

n

n∑
t=1

xt → Ex in some sense.



Exogeneity in Time Series Context

I Strict exogeneity.

E(ut |X ) = E(ut |..., xt+1, xt , xt−1, ...) = 0.

I Past and Contemporary exogeneity.

E(ut |xt , xt−1, ...) = 0.



Consistency of OLS

Under the Time Series Regression Assumptions (1)-(4), the OLS
estimator of the time series regression is consistent.



Special Cases

I Autoregressive models (AR),

yt = β0 + β1yt−1 + · · ·+ βpyt−p + ut .

I Autoregressive distributed lag models (ARDL)

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt−1 + · · ·+ γqxt−q + ut .

I Autoregressive models with exogenous variable (ARX)

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt + · · ·+ γqxt−q+1 + ut ,

where (xt) is past and contemporary exogenous.



Beat OLS in Efficiency

I OLS is consistent, but is not efficient in general.

I ut may be serially correlated and/or heteroscedastic. In such
cases, GLS would be a better alternative.

I A simple way to account for serial correlation is to explicitly
model ut as an ARMA process:

yt = x ′β + ut ,

where ut ∼ ARMA(p, q). But OLS is no longer able to
estimate this model. Instead, nonlinear least square or MLE
should be used.



Granger Causality

I Granger causality means that if x causes y , the x is a useful
predictor of yt .

I Granger Causality Test. In the model

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1xt−1 + · · ·+ γqxt−q + ut .

We test:
H0 : γ1 = · · · = γq = 0.

I The above test should be more appropriately called a
non-causality test. Or even more precisely, a non-predicting
test.

I Example: Monetary cause of inflation.

πt = β0+β1πt−1+· · ·+βpπt−p+γ1M1t−1+· · ·+γqM1t−q+ut .


