
Math Tools

1 Total Differential

Consider a multivariate function F (x1, . . . , xn). The total differential of F at the
point (x∗1, . . . , x

∗
n) is given by

dF =
∂F

∂x1
(x∗1, . . . , x

∗
n)dx1 + · · ·+ ∂F

∂xn
(x∗1, . . . , x

∗
n)dxn.

The total differential characterizes the change of F at the point (x∗1, . . . , x
∗
n) us-

ing partial derivatives. To us, the total differential is useful in obtaining a linear
representation of a change in a nonlinear multivariate function.

For example, consider an aggregate production function Y = F (K,L) and an
economy at the point (K∗, L∗). Then ∆Y (a change in Y ), if it is small compared
to Y , can be well approximated by,

∆Y =
∂F

∂K
(K∗, L∗)∆K +

∂F

∂L
(K∗, L∗)∆L.

That is, the change in output has to come from the change in inputs, given the
marginal product of capital and labor.

Often we denote the partial derivative ∂F
∂xi

(x∗1, . . . , x
∗
n) by Fi(x

∗
1, . . . , x

∗
n), mean-

ing the partial derivative of F with respect to the i-th argument. Or even simpler,
we may omit the arguments and write Fi, when there is no confusion over the point
where the total differential is taken. Using the shorthand notation, we may write
the total differential formula as,

dF = F1dx1 + · · ·+ Fndxn.

2 Implicit Function Theorem

The implicit function theorem is very useful for the analysis of single-equation mod-
els. First consider the simplest case involving an equation of two variables, x and
y:

Implicit Function Theorem: Let G(x, y) be a differentiable function around
(x∗, y∗). Suppose that G(x∗, y∗) = 0 and consider the equation G(x, y) = 0. If
∂G
∂y (x∗, y∗) 6= 0, then there exists a differentiable function y(x) defined on an interval
around x∗ such that G(x, y(x)) = 0 for all x ∈ I, y(x∗) = y∗, and

y′(x∗) ≡ dy

dx
|x=x∗ = −

∂G
∂x (x∗, y∗)
∂G
∂y (x∗, y∗)

.
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If G(x, y) = 0 represents a model, x is an exogenous variable, and y is an
endogenous variable, then we can use the theorem to calculate the effect of a change
in x on y.

And the theorem can be easily extended to accommodate more variables. If the
model is G(x1, . . . , xn, y) = 0, then it defines an implicit function y = y(x1, . . . , xn),
and

∂y

∂xi
|x1=x∗

1,...,xn=x∗
n,y=y∗ = −

∂G
∂xi

(x1 = x∗1, . . . , xn = x∗n, y = y∗)
∂G
∂y (x1 = x∗1, . . . , xn = x∗n, y = y∗

.

Or using the shorthand notation,

∂y

∂xi
= −Gi

Gy
,

where Gi represents partial derivative of G with respect to the i-the argument, which
is xi, and Gy is the partial derivative of G with respect to y.

3 Dealing with Multiple Equations

Implicit functions may be defined by multiple equations, or a set of equations. For
example, the following model, which is a set of equations

F (x1, x2, y, z) = 0

G(x1, x2, y, z) = 0

defines an implicit function y = y(x1, x2). Here, we may understand that x1 and
x2 are exogenous variables, and y and z are endogenous variables. To analyze the
effects of x1 and x2 on y, for example, we need to calculate ∂y/∂x1 and ∂y/∂x2. For
this purpose, there is a multiple-equation version of the implicit function theorem,
but it is difficult to remember. Instead, we may first linearize the model using the
total differential and apply the Cramer’s rule to calculate the partial effects.

First, we apply the total differential to each equation and obtain,

F1dx1 + F2dx2 + Fydy + Fzdz = 0

G1dx1 + G2dx2 + Gydy + Gzdz = 0

Now we have a linearized model. Moving all exogenous variables to the right hand
side, we may represent the model as[

Fy Fz

Gy Gz

] [
dy
dz

]
=

[
−F1dx1 − F2dx2
−G1dx1 −G2dx2

]
,

which is a linear system of equations with dy and dz as unknown variables. Then
we can apply Cramer’s rule to obtain ∂y/∂x1, ∂y/∂x2, ∂z/∂x1, and ∂z/∂x2. For

2



example, if we want to calculate ∂y/∂x1, then we force dx2 = 0, meaning that x2 is
fixed. The Cramer’s rule has

dy =

∣∣∣∣ −F1dx1 − F2dx2 Fz

−G1dx1 −G2dx2 Gz

∣∣∣∣∣∣∣∣ Fy Fz

Gy Gz

∣∣∣∣ =

∣∣∣∣ −F1 Fz

−G1 Gz

∣∣∣∣∣∣∣∣ Fy Fz

Gy Gz

∣∣∣∣ dx1.
Hence

dy

dx1
=

∣∣∣∣ −F1 Fz

−G1 Gz

∣∣∣∣∣∣∣∣ Fy Fz

Gy Gz

∣∣∣∣ .
Note that since we force dx2 = 0, the derivative dy

dx1
is in fact partial derivative

∂y/∂x1. Similarly, we can calculate ∂y/∂x2, ∂z/∂x1, and ∂z/∂x2. And the method
can be extended to deal with higher dimensional models.

Note that the Cramer’s rule is formally stated as follows.

Cramer’s Rule: Consider an n-dimensional system of linear equations, Ax = b,
where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 .

Then the solutions to x1, x2, etc. is given by

x1 =

∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1n
b2 a22 · · · a2n
...

. . .
...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣
A

, x2 =

∣∣∣∣∣∣∣∣∣
a11 b1 a13 · · · a1n
a21 b2 a23 · · · a2n
...

. . .
...

an1 bn an3 · · · ann

∣∣∣∣∣∣∣∣∣
A

· · ·

In other words, the solution to xi is given by a fraction. On the denominator is the
determinant of A. On the numerator is the determinant of A with its i-th column
replaced by the vector b.
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