Problem Set 2 for Econometrics

due on Oct $13,\,2013$

EC 310 Junhui Qian

1 Let

$$x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, and $y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$,

Find the following,

- (a) the orthogonal projection on range(x).
- (b) the orthogonal projection of y on range(x).
- (c) (optional) the projection on range(x) along the direction of y.

2 Consider the simple linear regression, $y_i = \beta_0 + \beta_1 x_i + u_i$. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the OLS estimators, and denote the sample average of y_i by \bar{y} . Define $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, $\hat{u}_i = y_i - \hat{y}_i$, and

$$T = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
$$E = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
$$R = \sum_{i=1}^{n} \hat{u}_i^2$$

Prove the following identity:

$$T = E + R.$$

3 Solve the following minimization problem,

$$\min_{\beta} (Y - X\beta)' \Omega(Y - X\beta),$$

where Ω is a symmetric positive definite matrix. Note that this problem reduces to OLS if $\Omega = I$.

4 Consider a linear regression $y_i = x'_i\beta + u_i$. Some elements of x_i are, however correlated with u_i . Now we have another vector of variables z_i that satisfy $\mathbb{E}z_iu_i = 0$ and $\mathbb{E}z_ix'_i$ is invertible. Derive a method of moment estimator for β .

5 Assume that x_1, \ldots, x_n are i.i.d. Uniform($[0, \theta]$). That is, the density function of each x is given by

$$p(x|\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le \theta\\ 0 & \text{otherwise} \end{cases}$$

Derive the maximum likelihood estimator for the parameter $\theta.$