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Endogeneity in Econometrics

I In a multiple linear regression, if at least one of the regressors
is correlated with the residual, then the exogeneity assumption
(E(u|x) = 0) is violated. We say that the regression suffers
from endogeneity problem.

I The endogeneity problem occurs when
I there is an omitted variable that is correlated with some

regressors.
I the dependent variable and at least one of the independent

variables are determined simultaneously in a system.
I there is measurement error in at least one of the regressors.

I When there is endogeneity problem, OLS estimates are biased
and inconsistent.



Example: When There Is An Omitted Variable

Consider our favorite example,

log(income) = β0 + β1edu + β2expr + u,

where we omit innate ability from the equation due to data
availability. Since higher ability contributes both to higher edu
(indirectly higher income) and directly to income, omitting ability
would result in correlation between edu and u, the residual that
contains the influence of ability .



Example: When There Is Simultaneity

Consider an imagined regression of employment level (L) on the
average wage (W ) and the foreign exchange rate (X ),

L = β0 + β1W + β2X + u.

Here it is arguable that W and L are determined simultaneously
from the equilibrium of the labor market, which is constantly
perturbed by shocks from both supply side (e.g., migration,
epidemic) and demand side (e.g., productivity, energy and
commodity price). Since the residual u also contains shocks from
both supply and demand sides, W would be correlated with u.



Why OLS Fails

Consider a simple linear regression,

y = β0 + β1x + u,

I To estimate β1 by OLS, we rely on the assumption that
E(u|x) = 0, which implies cov(x , u) = 0. This assumes that
when x changes, u would remain zero in average. Only under
this assumption, the change in y is useful for inferring β1 (and
β0).

I If cov(x , u) ̸= 0, when x changes, u would change accordingly,
then the change in y is not useful information.

I To consistently estimate the regression when cov(x , u) ̸= 0,
we obviously need more information. Instrumental variables
bring such information.



Instrument Variable

Consider a simple linear regression,

y = β0 + β1x + u,

where cov(x , u) ̸= 0.

I An instrument variable (IV) for x is a random variable w
satisfying

cov(x ,w) ̸= 0 and cov(w , u) = 0.

I An IV must be correlated with the endogenous variable, and
at the same time uncorrelated with unobserved factors that
affect y .

I When the IV changes, x changes accordingly, u remains zero
in average, so the change in y would be useful information for
inferring β’s.



Looking for IV

I An instrument variable (IV) for x must satisfy

(a) cov(x ,w) ̸= 0 and (b) cov(w , u) = 0.

I It is usually easy to find w that satisfies (a) or (b). But It is
challenging to find one that satisfies both.

I In particular, (b) is generally not verifiable, since u is
unobserved. We must argue for the validity of (b) on the
ground of economic intuition.

I To verify (a), we may run a simple linear regression,
x = γ0 + γ1w + v , and test H0 : γ1 = 0 against the two-sided
alternative.



Example: Looking for IV
Consider an omitted-variable example:

log(wage) = β0 + β1edu + u,

where we omitted ability .

I Suppose that ability has a none-zero partial effect on
log(wage) (that is, if we run
log(wage) = β0 + β1edu + β2ability + u, we would obtain a
β̂2 that is statistically significant.). Since edu and ability are
correlated, omitting ability would result in the endogeneity of
edu.

I It is easy to find variables that are correlated with edu, for
example, mother’s education attainment, family income. But
it is difficult to argue for the case that these are not related
with ability . Mother’s education attainment, for example,
may be positively correlated with children’s innate ability,
since the well-educated mother may have a better approach to
raising children.



Example Continued

I It is also easy to find variables that are uncorrelated with u,
for example, the last digit of ID number. But finding one that
is also correlated with edu is tough.

I Usually it takes some imagination and creativity to come up
with a good instrument.

I Can you think of any instrument for edu in our example?



IV in Multiple Linear Regression
Consider a multiple linear regression,

y = β0 + β1x + β2z + u, (1)

where cov(x , u) ̸= 0 and z is exogenous.

I An instrument variable (IV) for x is a random variable w
satisfying

(a) cov(x ,w |z) ̸= 0 and (b) cov(w , u) = 0.

I The condition (a) is different from the simple regression case.
It states that an IV must be correlated with the endogenous
variable after partially out the effect of z .

I Equivalently, γ1 in the following equation should be nonzero.

x = γ0 + γ1w + γ2z + v . (2)

I The equation (1) is often called structural equation, while (2)
is called the reduced-form equation.



Instrumental Variable Estimation

Consider a regression in matrix form,

Y = Xβ + u,

where at least one of the regressors are endogenous. Suppose that
in X , some regressors are endogenous and others exogenous. We
represent X by X = [X ex X en], where columns in X ex correspond
to exogenous variables, and those in X en correspond to
endogenous variables. Suppose we find a set of IV for X en, say Z ,
then we define W = [X ex Z ]. The IV estimator for β is given by

β̂iv = (W ′X )−1W ′Y .

Note that

I Z should have the same number of columns as X en.

I If there is a constant, then the column of 1’s is in X ex .

I We may consider X ex as instruments for themselves.



Deriving IV Estimator

The IV estimator can be obtained from

I Method of moments. From the moment condition
E(wiui ) = 0, we solve for β from

1

n

n∑
i=1

wi (yi − x ′iβ) = 0,

and obtain β̂ = (
∑n

i=1 wix
′
i )

−1 (
∑n

i=1 wiy
′
i ).

I Non-orthogonal projection. To project Y on R(X ) along the
direction of u, we need an instrument W that is orthogonal to
u. That is

W ′(Y − Xβ) = 0.

Solving for β obtains β̂ = (W ′X )−1W ′Y . Thus the projection
of Y on R(X ) along the direction of u is X (W ′X )−1W ′Y
and the non-orthogonal projection is P = X (W ′X )−1W ′.



IV Estimation for Simple Regression

For a simple linear regression y = β0 + β1x + u with an instrument
w for x , the IV estimator is given by

β̂1 =

∑n
i=1(wi − w̄)(yi − ȳ)∑n
i=1(wi − w̄)(xi − x̄)

,

and
β̂0 = ȳ − x̄ β̂1.

Note that

β1 =
cov(w , y)

cov(w , x)
,

β̂1 replaces population covariances by their sample analogs.



Properties of IV Estimation

I The IV estimator is generally biased.

E
(
β̂iv − β

)
= E(W ′X )−1W ′u ̸= 0

I The IV estimator is consistent. As n → ∞,

β̂iv − β =

(
1

n

n∑
i=1

wix
′
i

)−1(
1

n

n∑
i=1

wiui

)
→p 0.

I The IV estimator is asymptotically normal. As n → ∞,

√
n
(
β̂iv − β

)
=

(
1

n

n∑
i=1

wix
′
i

)−1(
1√
n

n∑
i=1

wiui

)
→d N

(
0, σ2(Ewx ′)−1(Eww ′)(Exw ′)−1

)
.



Asymptotic Covariance Matrix of the IV Estimator

Assuming homoscedasticity, E(u2|w) = σ2.

I The asymptotic covariance matrix of β̂iv is given by

Σiv =
σ2

n
(Ewx ′)−1(Eww ′)(Exw ′)−1.

I If x is exogenous and w = x , the above expression reduces to
σ2

n (Exx ′)−1, the asymptotic covariance matrix for OLS
estimator.



Asymptotic Covariance Matrix of the IV Estimator
If x is exogenous, then both OLS and IV give consistent estimate.
Which is better, in terms of asymptotic efficiency?

I Consider a special case: suppose x and w are scalar
zero-mean variables, then

var(β̂iv ) =
σ2

n

var(w)

cov(w , x)2
=

σ2

n

1

var(x)

1

corr(w , x)2
,

where corr(w , x) is correlation coefficient between w and x .
I Three messages:

I The more correlated between w and x , the more accurate is
the IV estimator.

I Since |corr(w , x)| ≤ 1, var(β̂iv ) ≥ σ2

n
1

var(x) = var(β̂ols).

Hence, when x is exogenous, OLS has a smaller asymptotic
variance. We say that in this case, OLS is asymptotically more
efficient than IV.

I A larger sample size helps reduce asymptotic variance.

I These messages carry to the general case.



Asymptotic Bias of IV Estimator

If there is slight correlation between the instrument and the
residual, the IV estimator would be asymptotically biased. The bias
may be severe if the correlation between the instrument and the
endogenous variable is low.

I As n → ∞,

β̂iv →p β +
(
Ewix

′
i

)−1
(Ewiui ) .

I Consider the special case where we assume x and w are scalar
non-zero variables,

Asymp. Bias =
corr(w , u)

corr(w , x)

σu
σx

.

I To avoid large asymptotic bias, we should choose instruments
that are more correlated with the endogenous variable.



Student t test with IV Estimator

I To construct Student t statistic, we need an estimate of the
covariance matrix of β̂iv ,

Σiv =
σ2

n
(Ewx ′)−1(Eww ′)(Exw ′)−1

I σ2 is estimated by

s2 =
1

n − 1− k

n∑
i=1

û2i ,

and we estimate Σiv by

Σ̂iv = s2(W ′X )−1(W ′W )(X ′W )−1.

I Taking square root of the diagonal of Σ̂iv , we obtain standard
errors for the IV estimators.

I The t statistic for, say, H0 : βj = b, is given by tβj
=

β̂j−b

se(β̂j )
,

which is distributed as N(0, 1) asymptotically.



When There Are More Instruments

Let wi be a q-dimensional vector of IV for a p-dimensional
regressor xi . Some elements of xi are endogenous. This is why we
need IV. And some elements of wi are identical to exogenous
variables in xi . (Almost always, there is the constant 1 in both xi
and wi , allowing for a constant term in the regression.) We have
discussed IV estimation which assumes q = p.

What if q > p? That is, how do we proceed if the number of
instruments is bigger than the number of endogenous variables
(over-identification)?



Two-State Least Square

The TSLS projects the columns of X onto the range of W , R(W ).
This results in a new set of instruments with identical number of
columns with X ,

X̂ = W (W ′W )−1W ′X = PWX . (3)

Then we use this new instrument in IV estimation and obtain

β̂2sls = (X̂ ′X )−1X̂ ′Y =
(
X ′PWX

)−1
X ′P ′

WY . (4)

This is called two-stage least square because we can write (4)
equivalently as

β̂2sls = (X̂ ′X̂ )−1X̂ ′Y .

This is the second least square, of Y on X̂ . (The first one is X on
W in (3).)



GMM Approach

The TSLS is a special case of the GMM (Generalized Method of
Moments) estimation, which solves

min
β

[
W ′(Y − Xβ)

]′
Ω
[
W ′(Y − Xβ)

]
,

where Ω is a symmetric positive definite matrix. Solving for β
obtains

β̂ =
(
X ′WΩW ′X

)−1
X ′WΩW ′Y .

Let Ω = (W ′W )−1, the above estimator reduces to the TSLS
estimator. It can be shown that if homoscedasticity holds, TSLS is
the most efficient GMM estimator.



Panel Data

I A panel data contain information on the same group of
individuals (persons, households, firms, provinces, countries,
etc.) over a period of time.

I If a panel data is available, we may deal with endogeneity
problems without resorting to IV, at least to some extent.

I See an example of a panel data set next page.



An Example of Panel Data

Person Year Wage Gender Age

1 2001 4000 0 22
1 2002 5000 0 23
1 2003 6000 0 24
2 2001 7000 1 27
2 2002 7500 1 28
2 2003 8000 1 29
3 2001 1500 0 19
3 2002 1600 0 20
3 2003 1650 0 21

...



A Panel Data Model for Endogeneity Problem

I Suppose that we regress y on x . If some of the elements in x
is endogenous, then OLS of yi = β0 + x ′iβ + ui using
cross-section data would result in inconsistent estimates.
Panel data, with more information on x and y , may help.

I We may write the following panel data model,

yit = x ′itβ + uit , i = 1, . . . ,N, t = 1, . . . ,T ,

where uit = µi + vit ,
I µi is a time-invariant individual effect for individual i that may

be correlated with xit .
I vit is iid N(0,σ2

v ), independent of x and z . vit is called
idiosyncratic error.

I This model is often called “fixed-effect model”. If, in addition,
we assume that µi ∼ iid N(0, σ2

µ) is independent from xit and
vit , then the model is often called “random-effect model”.



Estimating Fixed-Effect Panel Data Model: I

I An obvious approach is to get rid of µi by taking first
difference of the equation for each individual. Let
∆yit ≡ yit − yi ,t−1, we have

∆yit = ∆x ′itβ + eit ,

where eit = ∆vit .

I Now we can estimate β by OLS.

I eit is serially correlated, so OLS would be inefficient.



Estimating Fixed-Effect Panel Data Model: II

I A second approach is to get rid of µi by subtracting individual
means from each observations. Specifically, let
ȳi =

1
T

∑T
t=1 yit and similarly for other variables. In terms of

individual means, the model is

ȳi = x̄ ′iβ + µi + v̄i .

Subtracting the individual means from the original model, we
obtain

yit − ȳi = (xit − x̄i )
′β + (vit − v̄i ).

I Now OLS estimates β efficiently.



Estimating Fixed-Effect Panel Data Model: II

It can be shown that the second approach is, in effect, to treat
individual effects as coefficients on dummy variables and run least
square (LSDV). Specifically, let (yi ,Xi ) be the T observations on
the i-th individual. We can rewrite our model as

yi = Xiβ + ιµi + vi , i = 1, . . . ,N.

Or in matrix form,
y1
y2
...
yn

 =


X1

X2
...
Xn

β +


ι 0 · · · 0
0 ι · · · 0

...
0 0 · · · ι




µ1

µ2
...
µn

+


v1
v2
...
vn

 .



Assessing Fixed-Effect Panel Data Model

I Fixed-effects panel data model offers a solution to the
endogeneity problem without resorting to IV. Instead, it relies
on longer span of data collection on the same individual.

I Fixed-effects model can be consistently estimated as long as
the idiosyncratic errors are uncorrelated with the regressors.

I Time-invariant regressors are absorbed by the fixed effects.
Thus the effects of time-invariant regressors are unidentified in
fixed-effects panel data models. In estimation, it is clear that
any time-invariant regressor (e.g., gender, education) would
disappear after the first-differencing or de-mean
transformation.



The Random-Effect Panel Data Model

If the individual effects are not correlated with any regressors, i.e.,
there is no endogeneity problem, then we may use the
random-effect panel data model,

yit = x ′itβ + uit , i = 1, . . . ,N, t = 1, . . . ,T ,

where uit = µi + vit ,

I µi ∼ iid N(0, σ2
µ) is independent from xit and vit

I vit is iid N(0,σ2
v ), independent of x and z .

The random-effect model can be consistently estimated by OLS,
or, more efficiently, GLS.



Estimating Random-Effect Panel Data Model

Note that the covariance matrix of u = (u′1, . . . , u
′
n)

′ has a
particular structure,

Ω =


Σ 0 · · · 0
0 Σ · · · 0

...
0 0 · · · Σ

 ,

where

Σ =


σ2
µ + σ2

v σ2
µ · · · σ2

µ

σ2
µ σ2

µ + σ2
v · · · σ2

µ
...

σ2
µ σ2

µ · · · σ2
µ + σ2

v





Assessing Random-Effect Panel Data Model

I In the random-effect model, time-invariant regressors are no
longer absorbed by the fixed effects. Thus the effects of
time-invariant regressors are identified in random-effects panel
data models.

I When the random-effect assumptions hold, the random-effect
approach is more efficient. However, if there is correlation
between individual effects and any regressor, then the
random-effect approach would yield inconsistent estimation.

I In practice, we use Hausman-Wu test to check whether the
random-effect approach can be employed.


