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Standardized Scores: An Example

I When we study how salaries depend on IQ score, we may run
the following simple regression,

log(salaryi ) = β0 + β1IQi + u.

I What is the economic interpretation of β1 above?

I To make the coefficient more meaningful, we can define a new
variable

zi =
IQi − IQ

σ̂IQ

and run
log(salaryi ) = β0 + β1zi + u.

I Now, what is the economic interpretation of β1?



Standardized Scores

I Given a variable xi , the standardized score is defined as

zx ,i =
xi − x̄

σ̂x
,

where x̄ and σ̂x are the sample mean and standard deviation,
respectively.

I The coefficient on a standardized score is interpreted as the
increase in y when x is one standard deviation higher.



Standardized Score as Dependent Variable

I The standardized score can also be the dependent variable in
a regression. For example, let

zy ,i =
yi − ȳ

σ̂y
,

and run
zy ,i = β0 + β1x1 + β2x2 + u.

I β1 in this model is interpreted as the increase in y , in terms of
standard deviations, with each unit of increase in x1, holding
other factors fixed.



Standardized Coefficients

I We may need a model where all variables are standardized, for
example,

zy ,i = β1zx1,i + β2zx2,i + u.

I The β1 is interpreted as the increase in y , in terms of
standard deviations, when x1 is one standard deviation higher,
holding other factors fixed.

I Note that we need no constant term in the above model.

I The β’s in such models are called “standardized coefficients”.



Models with Quadratic Terms

I We have seen models with quadratic terms. For example, in
the income determination model,

log(income) = β0 + β1edu + β2edu
2 + β3expr + u.

I How do you interpret the parameters β1 and β2?



The Level-Dependent Partial Effect

In a model with quadratic terms,

y = β0 + β1x + β2x
2 + u.

I The partial effect of x on y is dependent on the level of x .

I To see why,
∂y

∂x
= β1 + 2β2x .



Back to Our Example

We estimate the model and obtain,

log(income) = 7.55 + 0.0715edu + 0.00560edu2 − 0.00299expr .

We may ask, for a person with 10 years’ education, how much
income increase would be expected if he receives one more year of
education?



Interaction Terms

I Recall that linear regression is the first-order approximation of
a usually nonlinear relationship:

y = f (x1, x2) + u ≈ β0 + β1x1 + β2x2 + u.

I To get better approximations, we may add quadratic terms,

y = f (x1, x2)+u ≈ β0+β1x1+β2x2+β3x
2
1+β4x

2
2+β5x1x2+u.

I β3 and β4 measures nonlinearities in x1 and x2, and β5
measures the “interaction” effect between x1 and x2.

I The term x1x2 is hence called the “interaction term”.



Interaction Effect

I There is “interaction effect” when a change in one
explanatory variable may affect the slope of another.

I For example, in a model of housing price,

price = β0 + β1sqft + β2rooms + β3sqft · rooms + β4bath+ u.

I The partial effect of rooms on price is β2 + β3sqft.

I If β3 > 0, an additional room in a large house is more valuable
than that in a small house.



Average Partial Effect

In a model with interaction terms,

y = β0 + β1x1 + β2x2 + β3x1x2 + u.

I β1 is the partial effect of x1 on y when x2 = 0.

I This is not very interesting. Instead, we may be interested in
the partial effect of x1 on y when x2 = x̄2.

I We may obtain such an “average partial effect” by plug x̄2 in
β̂1 + β̂3x2.

I To obtain average partial effect directly, we can run

y = β0 + β1x1 + β2x2 + β3(x1 − x̄1)(x2 − x̄2) + u.

I Now β1 is the desired average partial effect.



Binary (Dummy) Variables

I A binary variable describes qualitative information, in contrast
to quantitative information.

I For example, male or female, urban or rural residence,
employed or unemployed, a person buys a car or not, etc.

I A typical binary variable is defined as

female = 0, 1,

where 0 corresponds to “not female” and 1 corresponds to
“female”.



Binary Variable on the Intercept

I Binary variables may influence the intercept only. For
example, in the following model,

log(income) = β0 + β1edu + β2expr + β3female + u,

where female is a binary variable.

I For females, the model is

log(income) = (β0 + β3) + β1edu + β2expr + u.

I For males, the model is

log(income) = β0 + β1edu + β2expr + u.

I The group of males in this model can be called “baseline
group”.



Binary Variable on the Slope

I Binary variables may also influence the slope. For example, in
the following model,

log(income) = β0 + β1edu + β2expr + β3female · edu + u.

I For females, the model is

log(income) = β0 + (β1 + β3)edu + β2expr + u.

I For males, the model is

log(income) = β0 + β1edu + β2expr + u.



When There Are Several Categories

I Binary variables are easily defined when there are two
categories. For example, the gender of a person can only be
male or female.

I Other qualitative information may involve more than two
categories. For example, to describe the region of the country
where people live and work, we may have three categories
(coast, middle, west). For another example, to describe
seasonality, we have four categories.



When There Are Several Categories

I Obviously, one binary variable is not enough for more than
two categories. The solution is to have more than one binary
variables. For example, if there are 3 regions (coast, middle,
west) in total, we may consider

log(income) = β0 + β1edu+ β2expr + β3west + β4middle + u,

where west is defined as 1 if the individual is in the west and
0 otherwise.

I Why not add one more binary variable coast?



Testing the Existence of Qualitative Effects

I We often want to test whether being in some category (such
as gender, hukou, race, region, etc.) has any effect on
dependent variables, controlling for other factors.

I With multiple linear regression with binary variables, we may
easily achieve this.

I For example, to test whether or not females are discriminated
in work places, we may run

log(income) = β0 + β1edu + β2expr + β3female + u,

and test
H0 : β3 = 0 H1 : β3 < 0.



Modeling Binary Choices

I Decision to migrate or not

I Buy a car or not

I Rent or buy an apartment

I To vote for or against a bill

I For college/MBA graduates, find a job within 3 months

I For females, to be a housewife or not

I
...



Binary Distribution

Let y be the binary choice variable taking values of 0 and 1. We
can describe y by binary (or Bernoulli) distribution with parameter
p,

f (y) =

{
p if y = 1

1− p if y = 0

Equivalently, we may write

f (y) = py (1− p)1−y , y = 0, 1.

We have

Ey = p

var(y) = p(1− p).



Linear Probability Model

Let x be a vector of variables that influences the outcome of y ,
which takes value of 0 or 1. We may write a linear probability
model as follows,

y = x ′β + u.

I Let p = E(y |x) = x ′β. It is the probability of y = 1 given x .

I Conditional on x , y is distributed as Binary(p).

I var(y |x) is then p(1− p) = x ′β(1− x ′β).



An Example

Suppose y denotes the decision of an individual on whether or not
migrates to city. And let x be the income the individual receives
from previous job in the countryside. We may construct a simple
migration model,

y = β0 + β1x + u.



Problem of Linear Probability Model

I Heteroscedasticity.
I Nonsense Probability

I To see this, observe that after estimation,

ŷ = p̂ = x ′β̂.

I To make predictions based on the estimated model, it is not
guaranteed that p̂ ∈ [0, 1].

I The nonsense probability comes from linear marginal
probability,

∂p

∂x
= β.



Probit and Logit Model

I One method to limit p within [0, 1] is to use the cumulative
distribution function (cdf) of a distribution, say F (·),

p = F (x ′β) = P(Z ≤ x ′β).

I If F is the cdf of the standard normal distribution (N(0,1)),
then the model is called a “probit model”.

I If F (s) = 1
1+e−s , then the model is called a “logit model”.

Note that in this case, F is the cdf of a logistic distribution.



Marginal Effects on Probability

I Probit and logit models are nonlinear models with nonlinear
marginal effects on probability,

∂p

∂x
= f (x ′β)β, (1)

where f is the pdf of the corresponding distribution.

I When |x ′β| is large, the marginal probability is small. When
x ′β = 0, f reaches maximum and the marginal effects on
probability would be the largest.

I If x contains a binary variable d , the marginal probability is
given by

P(y = 1|x(d), d = 1)− P(y = 1|x(d), d = 0).

where x(d) contains all other variables.

I However, the formula in (1) is often accurate enough for
binary variables too.



Estimation of Probit and Logit Models

I We have to estimate the probit and logit models using MLE.

I The likelihood function is given by

p(β|Y ,X ) =
n∏

i=1

pi (β|xi )yi (1− pi (β|xi ))1−yi ,

where
pi (β|xi ) = F (x ′iβ).

I The log likelihood function is given by

ℓ(β|Y ,X ) =
n∑

i=1

{
yi log F (x

′
iβ)

+ (1− yi ) log(1− F (x ′iβ))
}
.

I The MLE estimator solves the following maximization
problem,

max
β

ℓ(β|Y ,X ).



Generalized Linear Model

I The GLM generalizes a large class of statistical models,
including the classical linear regression and the logit/probit
model.

I In a GLM, the dependent variables y is assumed to be
generated from a particular distribution in the exponential
family, which includes the normal, binomial, Poisson and
gamma distributions, among others. The mean of the
distribution depends on the independent variables x through:

E(y |x) = µ = g−1(x ′β),

where g(·) is a link function that links the linear predictor
η = x ′β with µ, η = g(µ).

I Linear regression: y is normal, µ = x ′β, g is identity.
I Logit/probit model: y is binary, µ = F (x ′β), g = F−1.
I Poisson regression: y is Poisson, µ = exp(x ′β), g = log.
I · · ·


