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The Objectives

» After estimating a model, we should always perform
diagnostics on the model. In particular, we should check
whether the assumptions we made are valid.

» For OLS estimation, we should usually check:

> Is the relationship between x and y linear?

> Are the residuals serially uncorrelated?

» Are the residuals uncorrelated with explanatory variables?
(endogeneity)

» Does homoscedasticity hold?



Residuals

v

Residuals are unobservable. But they can be estimated:
b = y; — xif3.
> Using matrix language,

b=(l—Px)Y.

v

If B is close to 3, then @; is close to u;.

v

Let y; = x{@ we call ¥; the “the fitted value”.

v

Then the explained variable can be decomposed into

yi =¥i+ 0.



Variations

» SST (total sum of squares)

n

SST=> (yi—y)P =Y (I-P)Y.
i=1

» SSE (explained sum of squares)

n

SSE=Y (5 —y)>=VY'(Px—P)Y.
i=1
» SSR (sum of squared residuals)

SSR = Z =Y'(I - Px)Y.

» We have SST = SSE + SSR.



Goodness of Fit

v

R? of the regression:
R? = SSE/SST =1 — SSR/SST.

R? is the fraction of the sample variation in y that is
explained by x. And we have 0 < R%2 <1.

R? does NOT validate a model. A high R? only says that y is
predictable with information in x. In social science, this is not
the case in general.

If additional regressors are added to a model, R? will increase.

The adjusted R?, denoted as R?, is designed to penalize the

rlumber of regressors,
R?2=1—[SSR/(n—1— k)]/[SST/(n — 1).



Low R?

High R?
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Residual Plots

We can plot
> Residuals
> Residuals versus Fitted Value
» Residuals versus Explanatory Variables

Any pattern in residual plots suggests nonlinearity or endogeneity.



Regression Residuals
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Figure : Residual Plots. DGP: y = 0.2 + x + 0.5x% + u



Partial Residual Plots

> To see whether there exists nonlinearity in a regressor, say the
J-th explanatory variable x;, We can plot

i+ Bjx; versus X,

where @ is residual from the full model.

» Partial residual plots may help us find the true (nonlinear)
functional form of x;.



Partial Residual Plots: Example

Suppose the true model is
y = Bo+ Bix + B2z + g(2) + v,
where g(z) is a nonlinear function. We mistakenly estimate:
y = Bo + Pix + Poz + 0.

If we plot Bzz + 1 versus z, we may probably be able to detect
nonlinearity in g(z).



Partial Residual Plot
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Figure : Residual Plots. DGP: y = 0.2 + x + 0.5z + 2 + u



The iid Assumption

v

The CLR assumption dictates that residuals should be iid.

> It is generally difficult to determine whether a given number
of observations are from the same distribution.

v

If there is a natural order of the observations (e.g., time),
then we may check whether the residuals are correlated.

v

If there is correlation, then the iid assumption is violated.



Residuals with Time

» When we deal with time series regression, for example,

7t = Bo + Bomt + uy,
where ¢ is the inflation rate and my is the growth rate of

money supply, both indexed by time t.

» Now the “natural order” is time, and a time series plot of the
estimated residual contains information.



Residual Plots

We can plot:
» Residuals over time
» Residuals v.s. previous residual

» Correlogram
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Figure : Residuals over time: u; = aus—1 +¢¢, a = 0,0.5,0.95, from top
to bottom.



No Correlation Weak Correlation Strong Correlation

Figure : Residuals v.s. previous residual: u; = auy_1 + €y,
a =0,0.5,0.95, from left to right.
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Figure : Correlograms: u; = au;_1 + &¢, a = 0,0.5,0.95, from left to
right.



Durbin-Watson Test

v

Durbin-Watson is the formal test for independence, or more
precisely, non-correlation.

v

It assumes a AR(1) model for u;, ur = aup—1 + &t

v

The null hypothesis is: Hy: p = a = 0.
The test statistic is

v
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Durbin-Watson Test

» DW € [0, 4].

» DW = 2 indicates no autocorrelation.

» If DW is substantially less than 2, there is evidence of positive
serial correlation. As a rough rule of thumb, if DW is less
than 1.0, there may be cause for alarm.

» Small values of DW indicate successive error terms are, on
average, close in value to one another, or positively correlated.

» Large values of DW indicate successive error terms are, on
average, much different in value to one another, or negatively
correlated.



Fixing Correlation

> It's most likely that the model is misspecified.
» The usual practices are:

» Add more explanatory variables
» Add more lags of the existing explanatory variables



If var(uj|x) = 2, we call the model “homoscedastic”. If not,

we call it “heteroscedastic”.

If homoscedasticity does not hold, but CLR Assumptions 1-4
still hold, the OLS estimator is still unbiased and consistent.
However, OLS is no longer BLUE.

We can detect heteroscedasticity by looking at the residuals
V.S. regressors.

> For simple regressions, we can look at regression lines.
» And we can formally test for homoscedasticity.

» White test
» Breusch-Pagan test



Residuals
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Figure :

Heteroscedasticity. DGP: y; = g 4+ 0.5x; + x;&;.



Fixing Heteroscedasticity

» Use a different specification for the model (different variables,
or perhaps non-linear transformations of the variables).

» Use GLS (Generalized Least Square).



