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Basics

Nonlinearity

Correlation

Homoscedasticity



The Objectives

I After estimating a model, we should always perform
diagnostics on the model. In particular, we should check
whether the assumptions we made are valid.

I For OLS estimation, we should usually check:
I Is the relationship between x and y linear?
I Are the residuals serially uncorrelated?
I Are the residuals uncorrelated with explanatory variables?

(endogeneity)
I Does homoscedasticity hold?



Residuals

I Residuals are unobservable. But they can be estimated:

ûi = yi − x ′i β̂.

I Using matrix language,

û = (I − PX )Y .

I If β̂ is close to β, then ûi is close to ui .

I Let ŷi = x ′i β̂, we call ŷi the “the fitted value”.

I Then the explained variable can be decomposed into

yi = ŷi + ûi .



Variations

I SST (total sum of squares)

SST ≡
n∑

i=1

(yi − ȳ)2 = Y ′(I − Pι)Y .

I SSE (explained sum of squares)

SSE ≡
n∑

i=1

(ŷi − ȳ)2 = Y ′(PX − Pι)Y .

I SSR (sum of squared residuals)

SSR ≡
n∑

i=1

û2i = Y ′(I − PX )Y .

I We have SST = SSE+ SSR.



Goodness of Fit

I R2 of the regression:

R2 ≡ SSE/SST = 1− SSR/SST.

I R2 is the fraction of the sample variation in y that is
explained by x . And we have 0 ≤ R2 ≤ 1.

I R2 does NOT validate a model. A high R2 only says that y is
predictable with information in x . In social science, this is not
the case in general.

I If additional regressors are added to a model, R2 will increase.

I The adjusted R2, denoted as R̄2, is designed to penalize the
number of regressors,
R̄2 = 1− [SSR/(n − 1− k)]/[SST/(n − 1).
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Residual Plots

We can plot

I Residuals

I Residuals versus Fitted Value

I Residuals versus Explanatory Variables

Any pattern in residual plots suggests nonlinearity or endogeneity.
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Figure : Residual Plots. DGP: y = 0.2 + x + 0.5x2 + u



Partial Residual Plots

I To see whether there exists nonlinearity in a regressor, say the
j-th explanatory variable xj , We can plot

û + β̂jxj versus xj ,

where û is residual from the full model.

I Partial residual plots may help us find the true (nonlinear)
functional form of xj .



Partial Residual Plots: Example

Suppose the true model is

y = β0 + β1x + β2z + g(z) + u,

where g(z) is a nonlinear function. We mistakenly estimate:

y = β̂0 + β̂1x + β̂2z + û.

If we plot β̂2z + û versus z , we may probably be able to detect
nonlinearity in g(z).
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Figure : Residual Plots. DGP: y = 0.2 + x + 0.5z + z2 + u



The iid Assumption

I The CLR assumption dictates that residuals should be iid.

I It is generally difficult to determine whether a given number
of observations are from the same distribution.

I If there is a natural order of the observations (e.g., time),
then we may check whether the residuals are correlated.

I If there is correlation, then the iid assumption is violated.



Residuals with Time

I When we deal with time series regression, for example,

πt = β0 + β0mt + ut ,

where πt is the inflation rate and mt is the growth rate of
money supply, both indexed by time t.

I Now the “natural order” is time, and a time series plot of the
estimated residual contains information.



Residual Plots

We can plot:

I Residuals over time

I Residuals v.s. previous residual

I Correlogram
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Figure : Residuals over time: ut = αut−1 + εt , α = 0, 0.5, 0.95, from top
to bottom.
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Figure : Residuals v.s. previous residual: ut = αut−1 + εt ,
α = 0, 0.5, 0.95, from left to right.
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Figure : Correlograms: ut = αut−1 + εt , α = 0, 0.5, 0.95, from left to
right.



Durbin-Watson Test

I Durbin-Watson is the formal test for independence, or more
precisely, non-correlation.

I It assumes a AR(1) model for ut , ut = αut−1 + εt .

I The null hypothesis is: H0 : ρ = α = 0.

I The test statistic is

DW =

∑T
t=2(ût − ût−1)

2∑T
t=1 û

2
t−1

.



Durbin-Watson Test

I DW ∈ [0, 4].

I DW = 2 indicates no autocorrelation.

I If DW is substantially less than 2, there is evidence of positive
serial correlation. As a rough rule of thumb, if DW is less
than 1.0, there may be cause for alarm.

I Small values of DW indicate successive error terms are, on
average, close in value to one another, or positively correlated.

I Large values of DW indicate successive error terms are, on
average, much different in value to one another, or negatively
correlated.



Fixing Correlation

I It’s most likely that the model is misspecified.
I The usual practices are:

I Add more explanatory variables
I Add more lags of the existing explanatory variables



I If var(ui |x) = σ2, we call the model “homoscedastic”. If not,
we call it “heteroscedastic”.

I If homoscedasticity does not hold, but CLR Assumptions 1-4
still hold, the OLS estimator is still unbiased and consistent.
However, OLS is no longer BLUE.

I We can detect heteroscedasticity by looking at the residuals
v.s. regressors.

I For simple regressions, we can look at regression lines.
I And we can formally test for homoscedasticity.

I White test
I Breusch-Pagan test
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Figure : Heteroscedasticity. DGP: yi = β0 + 0.5xi + xiεi .



Fixing Heteroscedasticity

I Use a different specification for the model (different variables,
or perhaps non-linear transformations of the variables).

I Use GLS (Generalized Least Square).


